Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Glob Chang Biol ; 30(5): e17303, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741339

RESUMO

Nitrous oxide (N2O) emissions from livestock manure contribute significantly to the growth of atmospheric N2O, a powerful greenhouse gas and dominant ozone-depleting substance. Here, we estimate global N2O emissions from livestock manure during 1890-2020 using the tier 2 approach of the 2019 Refinement to the 2006 IPCC Guidelines. Global N2O emissions from livestock manure increased by ~350% from 451 [368-556] Gg N year-1 in 1890 to 2042 [1677-2514] Gg N year-1 in 2020. These emissions contributed ~30% to the global anthropogenic N2O emissions in the decade 2010-2019. Cattle contributed the most (60%) to the increase, followed by poultry (19%), pigs (15%), and sheep and goats (6%). Regionally, South Asia, Africa, and Latin America dominated the growth in global emissions since the 1990s. Nationally, the largest emissions were found in India (329 Gg N year-1), followed by China (267 Gg N year-1), the United States (163 Gg N year-1), Brazil (129 Gg N year-1) and Pakistan (102 Gg N year-1) in the 2010s. We found a substantial impact of livestock productivity, specifically animal body weight and milk yield, on the emission trends. Furthermore, a large spread existed among different methodologies in estimates of global N2O emission from livestock manure, with our results 20%-25% lower than those based on the 2006 IPCC Guidelines. This study highlights the need for robust time-variant model parameterization and continuous improvement of emissions factors to enhance the precision of emission inventories. Additionally, urgent mitigation is required, as all available inventories indicate a rapid increase in global N2O emissions from livestock manure in recent decades.


Assuntos
Gado , Esterco , Óxido Nitroso , Óxido Nitroso/análise , Esterco/análise , Animais , Poluentes Atmosféricos/análise
2.
J Environ Manage ; 351: 119754, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071916

RESUMO

The effects of volatile organic compounds on urban air quality and the ozone have been widely acknowledged, and the contributions of relevant biogenic sources are currently receiving rising attentions. However, inventories of biogenic volatile organic compounds (BVOCs) are in fact limited for the environmental management of megacities. In this study, we provided an estimation of BVOC emissions and their spatial characteristics in a typical urbanized area, Shenzhen megacity, China, based on an in-depth vegetation investigation and using remote sensing data. The total BVOC emission in Shenzhen in 2019 was estimated to be 3.84 × 109 g C, of which isoprene contributed to about 24.4%, monoterpenes about 44.4%, sesquiterpenes about 1.9%, and other VOCs (OVOCs) about 29.3%. Metropolitan BVOC emissions exhibited a seasonal pattern with a peak in July and a decline in January. They were mainly derived from the less built-up areas (88.9% of BVOC emissions). Estimated BVOCs comprised around 5.2% of the total municipal VOC emissions in 2019. This percentage may increase as more green spaces emerge and anthropogenic emissions decrease in built-up areas. Furthermore, synergistic effects existed between BVOC emissions and relevant vegetation-based ecosystem services (e.g., air purification, carbon fixation). Greening during urban sprawl should be based on a trade-off between BVOC emissions and ecosystem benefits of urban green spaces. The results suggested that urban greening in Shenzhen, and like other cities as well, need to account for BVOC contributions to ozone. Meanwhile, greening cites should adopt proactive environmental management by using plant species with low BVOC emissions to maintain urban ecosystem services while avoid further degradation to ozone pollution.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Árvores/metabolismo , Ecossistema , Monitoramento Ambiental , China
3.
Glob Chang Biol ; 29(18): 5304-5320, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376714

RESUMO

Ecological restoration projects (ERPs) are an indispensable component of natural climate solutions and have proven to be very important for reversing environmental degradation in vulnerable regions and enhancing ecosystem services. However, the level of enhancement would be inevitably influenced by global drought and rising CO2 , which remain less investigated. In this study, we took the Beijing-Tianjin sand source region (which has experienced long-term ERPs), China, as an example and combined the process-based Biome-BGCMuSo model to set multiple scenarios to address this issue. We found ERP-induced carbon sequestration (CS), water retention (WR), soil retention (SR), and sandstorm prevention (SP) increased by 22.21%, 2.87%, 2.35%, and 28.77%, respectively. Moreover, the ecosystem services promotion from afforestation was greater than that from grassland planting. Approximately 91.41%, 98.13%, and 64.51% of the increased CS, SR, and SP were contributed by afforestation. However, afforestation also caused the WR to decline. Although rising CO2 amplified ecosystem services contributed by ERPs, it was almost totally offset by drought. The contribution of ERPs to CS, WR, SR, and SP was reduced by 5.74%, 32.62%, 11.74%, and 14.86%, respectively, under combined drought and rising CO2 . Our results confirmed the importance of ERPs in strengthening ecosystem services provision. Furthermore, we provide a quantitative way to understand the influence rate of drought and rising CO2 on ERP-induced ecosystem service dynamics. In addition, the considerable negative climate change impact implied that restoration strategies should be optimized to improve ecosystem resilience to better combat negative climate change impacts.


Assuntos
Dióxido de Carbono , Ecossistema , Secas , China , Pequim , Solo , Mudança Climática
4.
Proc Natl Acad Sci U S A ; 117(25): 14593-14601, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513694

RESUMO

Gross domestic product (GDP) summarizes a vast amount of economic information in a single monetary metric that is widely used by decision makers around the world. However, GDP fails to capture fully the contributions of nature to economic activity and human well-being. To address this critical omission, we develop a measure of gross ecosystem product (GEP) that summarizes the value of ecosystem services in a single monetary metric. We illustrate the measurement of GEP through an application to the Chinese province of Qinghai, showing that the approach is tractable using available data. Known as the "water tower of Asia," Qinghai is the source of the Mekong, Yangtze, and Yellow Rivers, and indeed, we find that water-related ecosystem services make up nearly two-thirds of the value of GEP for Qinghai. Importantly most of these benefits accrue downstream. In Qinghai, GEP was greater than GDP in 2000 and three-fourths as large as GDP in 2015 as its market economy grew. Large-scale investment in restoration resulted in improvements in the flows of ecosystem services measured in GEP (127.5%) over this period. Going forward, China is using GEP in decision making in multiple ways, as part of a transformation to inclusive, green growth. This includes investing in conservation of ecosystem assets to secure provision of ecosystem services through transregional compensation payments.


Assuntos
Conservação dos Recursos Naturais/economia , Tomada de Decisões , Ecossistema , Modelos Econômicos , Desenvolvimento Sustentável , China
5.
J Environ Sci (China) ; 126: 806-816, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503805

RESUMO

Improving the efficiency with which natural resources are utilized is an indispensable for achieving sustainable development and carbon neutrality. By analyzing the utilization efficiency of energy, water, and land, we established a comprehensive natural resource utilization efficiency index (NRUEI). We then calculated the 2016 index for 165 cities in China, and investigated what caused it to vary. We found three main results: (1) the NRUEI varied greatly across China and there were significant positive correlations between urban energy utilization efficiency (EUE), water utilization efficiency (WUE) and land utilization efficiency (LUE); (2) the NRUEI showed a significant positive correlation with a city's population size, economy (Gross Domestic Product (GDP)), and the level of urban social development (GDP per capita); (3) cities in East China have the highest natural resource utilization efficiency, while cities in Northeast China have the lowest. These results indicate that China's increasing urban development is associated with rising natural resource utilization efficiency and that the city's endowment of natural resources is an important factor affecting that efficiency. Further, the results showed that the determinants of a city's NRUEI differed in large and small cities. Lastly, our results suggest that improving EUE is key for improving NRUEI in urban China, and different efficiencies can be improved intertwined. A major takeaway of this study is that there is great potential for improving natural resource utilization efficiency in Chinese cities and we include city-specific suggestions for efficiency improvements.


Assuntos
Reforma Urbana , Cidades , Recursos Naturais , Água , China
6.
Proc Natl Acad Sci U S A ; 116(17): 8623-8628, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30952787

RESUMO

A major challenge in transforming development to inclusive, sustainable pathways is the pervasive and persistent trade-off between provisioning services (e.g., agricultural production) on the one hand and regulating services (e.g., water purification, flood control) and biodiversity conservation on the other. We report on an application of China's new Ecological Development Strategy, now being formally tested and refined for subsequent scaling nationwide, which aims to mitigate and even eliminate these trade-offs. Our focus is the Ecosystem Function Conservation Area of Hainan Island, a rural, tropical region where expansion of rubber plantations has driven extensive loss of natural forest and its vital benefits to people. We explored both the biophysical and the socioeconomic options for achieving simultaneous improvements in product provision, regulating services, biodiversity, and livelihoods. We quantified historic trade-offs between rubber production and vital regulating services, finding that, over the past 20 y (1998-2017), there was a 72.2% increase in rubber plantation area, leading to decreases in soil retention (17.8%), water purification [reduced retention of nitrogen (56.3%) and phosphorus (27.4%)], flood mitigation (21.9%), carbon sequestration (1.7%), and habitat for biodiversity (6.9%). Using scenario analyses, we identified a two-pronged strategy that would significantly reduce these trade-offs, enhancing regulating services and biodiversity, while simultaneously diversifying and increasing product provision and improving livelihoods. This general approach to analyzing product provision, regulating services, biodiversity, and livelihoods has applicability in rural landscapes across China, South and Southeast Asia, and beyond.


Assuntos
Conservação dos Recursos Naturais , Ecologia , Biodiversidade , China , Ecologia/métodos , Ecologia/organização & administração , Ecossistema , Monitoramento Ambiental , Humanos , Pobreza/prevenção & controle
7.
Proc Natl Acad Sci U S A ; 114(7): 1601-1606, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137858

RESUMO

Recent expansion of the scale of human activities poses severe threats to Earth's life-support systems. Increasingly, protected areas (PAs) are expected to serve dual goals: protect biodiversity and secure ecosystem services. We report a nationwide assessment for China, quantifying the provision of threatened species habitat and four key regulating services-water retention, soil retention, sandstorm prevention, and carbon sequestration-in nature reserves (the primary category of PAs in China). We find that China's nature reserves serve moderately well for mammals and birds, but not for other major taxa, nor for these key regulating ecosystem services. China's nature reserves encompass 15.1% of the country's land surface. They capture 17.9% and 16.4% of the entire habitat area for threatened mammals and birds, but only 13.1% for plants, 10.0% for amphibians, and 8.5% for reptiles. Nature reserves encompass only 10.2-12.5% of the source areas for the four key regulating services. They are concentrated in western China, whereas much threatened species' habitat and regulating service source areas occur in eastern provinces. Our analysis illuminates a strategy for greatly strengthening PAs, through creating the first comprehensive national park system of China. This would encompass both nature reserves, in which human activities are highly restricted, and a new category of PAs for ecosystem services, in which human activities not impacting key services are permitted. This could close the gap in a politically feasible way. We also propose a new category of PAs globally, for sustaining the provision of ecosystems services and achieving sustainable development goals.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Ecossistema , Anfíbios/crescimento & desenvolvimento , Animais , Aves/crescimento & desenvolvimento , China , Espécies em Perigo de Extinção , Geografia , Atividades Humanas , Humanos , Mamíferos/crescimento & desenvolvimento , Desenvolvimento Vegetal , Répteis/crescimento & desenvolvimento , Solo
8.
J Environ Manage ; 255: 109915, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31783212

RESUMO

Coastal zones are increasingly threatened by stressors from both climate change and human activities. Vulnerability assessment is central to the implementation of interventions for adapting climate change. However, synthetic vulnerability based on an integrative analysis of ecosystem service and socioeconomic characteristics in urban coastal zones with tightly coupled human-nature interactions is not fully understood. Based on the Coastal Vulnerability model of the InVEST (Integrated Valuation of Environmental Services and Tradeoffs) tool, a holistic framework for assessing coastal vulnerability to multiple hazards (sea level rise, waves and storm surge) was developed by integrating ecological, physical and socioeconomic factors into a single spatial representation and applied to the coast of Shenzhen, China. Based on the levels of biophysical exposure, sensitivity and adaptive capacity of coastal communities, a three-dimensional decision matrix was proposed for planning location-specific interventions. Results show that approximately 15% of the coastline were categorized as having high vulnerability. Spatial vulnerability heterogeneity was found within and across the coastal districts, with Yantian grouped into the most vulnerable district. The biophysical exposure has greater influences on the overall vulnerability than either sensitivity or adaptive capacity. This study highlights the significance of complex interactions between natural ecosystems and socioeconomic conditions in driving vulnerability and suggests that combined natural-based defenses and socioeconomic factors contribute to lower vulnerability. The results can help decision-makers prioritize coastal zones for interventions and identifying adaptive strategies that target drivers of vulnerability.


Assuntos
Mudança Climática , Ecossistema , Aclimatação , China , Conservação dos Recursos Naturais , Ecologia , Humanos
9.
Proc Natl Acad Sci U S A ; 112(24): 7396-401, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26082546

RESUMO

Ideally, both ecosystem service and human development policies should improve human well-being through the conservation of ecosystems that provide valuable services. However, program costs and benefits to multiple stakeholders, and how they change through time, are rarely carefully analyzed. We examine one of China's new ecosystem service protection and human development policies: the Relocation and Settlement Program of Southern Shaanxi Province (RSP), which pays households who opt voluntarily to resettle from mountainous areas. The RSP aims to reduce disaster risk, restore important ecosystem services, and improve human well-being. We use household surveys and biophysical data in an integrated economic cost-benefit analysis for multiple stakeholders. We project that the RSP will result in positive net benefits to the municipal government, and to cross-region and global beneficiaries over the long run along with environment improvement, including improved water quality, soil erosion control, and carbon sequestration. However, there are significant short-run relocation costs for local residents so that poor households may have difficulty participating because they lack the resources to pay the initial costs of relocation. Greater subsidies and subsequent supports after relocation are necessary to reduce the payback period of resettled households in the long run. Compensation from downstream beneficiaries for improved water and from carbon trades could be channeled into reducing relocation costs for the poor and sharing the burden of RSP implementation. The effectiveness of the RSP could also be greatly strengthened by early investment in developing human capital and environment-friendly jobs and establishing long-term mechanisms for securing program goals. These challenges and potential solutions pervade ecosystem service efforts globally.


Assuntos
Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/legislação & jurisprudência , Ecossistema , China , Análise Custo-Benefício , Emigração e Imigração/legislação & jurisprudência , Meio Ambiente , Política Ambiental , Programas Governamentais , Humanos
10.
Proc Natl Acad Sci U S A ; 112(24): 7348-55, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26082539

RESUMO

The central challenge of the 21st century is to develop economic, social, and governance systems capable of ending poverty and achieving sustainable levels of population and consumption while securing the life-support systems underpinning current and future human well-being. Essential to meeting this challenge is the incorporation of natural capital and the ecosystem services it provides into decision-making. We explore progress and crucial gaps at this frontier, reflecting upon the 10 y since the Millennium Ecosystem Assessment. We focus on three key dimensions of progress and ongoing challenges: raising awareness of the interdependence of ecosystems and human well-being, advancing the fundamental interdisciplinary science of ecosystem services, and implementing this science in decisions to restore natural capital and use it sustainably. Awareness of human dependence on nature is at an all-time high, the science of ecosystem services is rapidly advancing, and talk of natural capital is now common from governments to corporate boardrooms. However, successful implementation is still in early stages. We explore why ecosystem service information has yet to fundamentally change decision-making and suggest a path forward that emphasizes: (i) developing solid evidence linking decisions to impacts on natural capital and ecosystem services, and then to human well-being; (ii) working closely with leaders in government, business, and civil society to develop the knowledge, tools, and practices necessary to integrate natural capital and ecosystem services into everyday decision-making; and (iii) reforming institutions to change policy and practices to better align private short-term goals with societal long-term goals.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Tomada de Decisões , Ecologia/economia , Ecologia/métodos , Ecologia/tendências , Humanos , Política Pública
11.
Environ Monit Assess ; 189(6): 269, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28508946

RESUMO

Increasing exploitation of karst resources is causing severe environmental degradation because of the fragility and vulnerability of karst areas. By integrating principal component analysis (PCA) with annual seasonal trend analysis (ASTA), this study assessed karst rocky desertification (KRD) within a spatial context. We first produced fractional vegetation cover (FVC) data from a moderate-resolution imaging spectroradiometer normalized difference vegetation index using a dimidiate pixel model. Then, we generated three main components of the annual FVC data using PCA. Subsequently, we generated the slope image of the annual seasonal trends of FVC using median trend analysis. Finally, we combined the three PCA components and annual seasonal trends of FVC with the incidence of KRD for each type of carbonate rock to classify KRD into one of four categories based on K-means cluster analysis: high, moderate, low, and none. The results of accuracy assessments indicated that this combination approach produced greater accuracy and more reasonable KRD mapping than the average FVC based on the vegetation coverage standard. The KRD map for 2010 indicated that the total area of KRD was 78.76 × 103 km2, which constitutes about 4.06% of the eight southwest provinces of China. The largest KRD areas were found in Yunnan province. The combined PCA and ASTA approach was demonstrated to be an easily implemented, robust, and flexible method for the mapping and assessment of KRD, which can be used to enhance regional KRD management schemes or to address assessment of other environmental issues.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Análise de Componente Principal , China , Mudança Climática , Ecossistema , Modelos Teóricos , Imagens de Satélites , Estações do Ano
13.
Proc Natl Acad Sci U S A ; 110(41): 16681-6, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24003160

RESUMO

Despite broad interest in using payment for ecosystem services to promote changes in the use of natural capital, there are few expost assessments of impacts of payment for ecosystem services programs on ecosystem service provision, program cost, and changes in livelihoods resulting from program participation. In this paper, we evaluate the Paddy Land-to-Dry Land (PLDL) program in Beijing, China, and associated changes in service providers' livelihood activities. The PLDL is a land use conversion program that aims to protect water quality and quantity for the only surface water reservoir that serves Beijing, China's capital city with nearly 20 million residents. Our analysis integrates hydrologic data with household survey data and shows that the PLDL generates benefits of improved water quantity and quality that exceed the costs of reduced agricultural output. The PLDL has an overall benefit-cost ratio of 1.5, and both downstream beneficiaries and upstream providers gain from the program. Household data show that changes in livelihood activities may offset some of the desired effects of the program through increased expenditures on agricultural fertilizers. Overall, however, reductions in fertilizer leaching from land use change dominate so that the program still has a positive net impact on water quality. This program is a successful example of water users paying upstream landholders to improve water quantity and quality through land use change. Program evaluation also highlights the importance of considering behavioral changes by program participants.


Assuntos
Conservação dos Recursos Naturais/economia , Ecossistema , Avaliação de Programas e Projetos de Saúde/estatística & dados numéricos , Abastecimento de Água/economia , Trabalho/economia , China , Análise Custo-Benefício , Fertilizantes/economia , Humanos
14.
Ecol Lett ; 18(1): 108-18, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25394857

RESUMO

Governments worldwide are recognising ecosystem services as an approach to address sustainability challenges. Decision-makers need credible and legitimate measurements of ecosystem services to evaluate decisions for trade-offs to make wise choices. Managers lack these measurements because of a data gap linking ecosystem characteristics to final ecosystem services. The dominant method to address the data gap is benefit transfer using ecological data from one location to estimate ecosystem services at other locations with similar land cover. However, benefit transfer is only valid once the data gap is adequately resolved. Disciplinary frames separating ecology from economics and policy have resulted in confusion on concepts and methods preventing progress on the data gap. In this study, we present a 10-step approach to unify concepts, methods and data from the disparate disciplines to offer guidance on overcoming the data gap. We suggest: (1) estimate ecosystem characteristics using biophysical models, (2) identify final ecosystem services using endpoints and (3) connect them using ecological production functions to quantify biophysical trade-offs. The guidance is strategic for public policy because analysts need to be: (1) realistic when setting priorities, (2) attentive to timelines to acquire relevant data, given resources and (3) responsive to the needs of decision-makers.


Assuntos
Conservação dos Recursos Naturais/economia , Tomada de Decisões , Ecossistema , Política Pública , Ecologia/métodos , Modelos Teóricos , Formulação de Políticas
17.
Environ Monit Assess ; 187(6): 362, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25980726

RESUMO

Water flow regulation is an important ecosystem service that significantly impacts on ecological quality and social benefits. With the aim of improving our understanding of ecosystems and proposing strategies for optimizing ecosystem services, a geographic information system (GIS)-based approach was designed to estimate and map regulated water flow in the Chongqing region of China. In this study, we applied the integrated valuation of environmental services and tradeoffs (InVEST) model and mathematical simulations to estimate the provision of the regulated water flow across space and time in 2000, 2005, and 2010. The results indicated that this ecosystem service had improved by 2.07 % from 2000 to 2010 as a result of human activities (such as vegetation restoration) and climatic interaction. Places with positive changes mainly occurred in high mountain areas, whereas places with negative changes were mainly distributed in resettlement areas along the Yangtze River. The type of ecosystem in areas with high mountains and steep slopes was a relatively minor contributor to the total service, but this ecosystem had the higher water flow regulation capacity. Moreover, with the increase in altitude and slope, the percentage contribution of forest increased significantly from 2000 to 2010; by contrast, the percentage contribution of cropland decreased rapidly. As for the impacts, the spatial variation of water flow regulation in the Chongqing region had a significant relation with climate and human activities at the regional scale. These results provided specific information that could be used to strengthen necessary public awareness about the protection and restoration of ecosystems.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental/métodos , Rios/química , Movimentos da Água , Altitude , China , Sistemas de Informação Geográfica , Humanos , Modelos Teóricos
18.
J Environ Sci (China) ; 28: 195-202, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25662255

RESUMO

The nitrogen balance can serve as an indicator of the risk to the environment of nitrogen loss from agricultural land. To investigate the temporal and spatial changes in agricultural nitrogen application and its potential threat to the environment of the Haihe Basin in China, we used a database of county-level agricultural statistics to calculate agricultural nitrogen input, output, surplus intensity, and use efficiency. Chemical fertilizer nitrogen input increased by 51.7% from 1990 to 2000 and by 37.2% from 2000 to 2010, concomitant with increasing crop yields. Simultaneously, the nitrogen surplus intensity increased by 53.5% from 1990 to 2000 and by 16.5% from 2000 to 2010, presenting a continuously increased environmental risk. Nitrogen use efficiency decreased from 0.46 in 1990 to 0.42 in 2000 and remained constant at 0.42 in 2010, partly due to fertilizer composition and type improvement. This level indicates that more than half of nitrogen inputs are lost in agroecosystems. Our results suggest that although the improvement in fertilizer composition and types has partially offset the decrease in nitrogen use efficiency, the environmental risk has still increased gradually over the past 20 years, along with the increase in crop yields and nitrogen application. It is important to achieve a better nitrogen balance through more effective management to significantly reduce the environmental risk, decrease nitrogen surplus intensity, and increase nitrogen use efficiency without sacrificing crop yields.


Assuntos
Agricultura , Poluentes Ambientais/análise , Fertilizantes/análise , Nitrogênio/análise , Poluentes Atmosféricos , China , Ecossistema , Ciclo do Nitrogênio , Medição de Risco , Fatores de Tempo
19.
J Environ Manage ; 132: 178-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24316751

RESUMO

There is an urgent requirement to examine the quality of harvested rainwater for potable and non-potable purposes, based on the type of roofing material. In this study, we examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with alternative roofing materials (green roof). The results showed that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. However, in this study, the green roof was not suitable for rainwater harvesting applications. In addition, seasonal trends in water quality parameters showed that pollutants in roof runoff in summer and autumn were lower than those in winter and spring. This study revealed that the quality of harvested rainwater was significantly affected by the roofing material; therefore, local government and urban planners should develop stricter testing programs and produce more weathering resistant roofing materials to allow the harvesting of rainwater for domestic and public uses.


Assuntos
Materiais de Construção/análise , Chuva/química , Qualidade da Água , Abastecimento de Água/análise , China , Monitoramento Ambiental , Análise Multivariada , Estações do Ano
20.
iScience ; 27(3): 109195, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38420584

RESUMO

The interactions between human and natural systems and their effects have unforeseen results, particularly in the management of water resources. Using water stress mitigation as an example, a water resources management effect index (WRMEI) was created to quantitatively evaluate the trends of water management effects. This revealed that the WRMEI was decreasing due to the impact of the water resources management process. The findings demonstrate that water resources management has unintended effects: there was a gap between the expectation of water stress to be mitigated and the actual results of water stress increasing. That is caused by human activities in water utilization: (1) increasing available water resources from water transfer was not utilized sparingly in the receiving cities-increased water transfers from external sources increase domestic water consumption per capita; (2) improving water efficiency has a positive effect on mitigating water stress, but the population growth decreased the efficiency. It was concluded that much greater attention needs to be paid to water conservation in residential and living use to counter these unintended water management effects.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa