Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 189(2): 72, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28116605

RESUMO

Gaseous elemental mercury (GEM) concentrations were determined in three different indoor environments: an office in a building with no indoor sources of mercury (Bldg. I), an office affected by indoor mercury emissions from an adjacent laboratory (Bldg. II), and finally, an office where an outdoor mercury spill occurred accidentally (Bldg. III). The maximum recorded indoor GEM concentrations, with the largest variation in time, were observed in Bldg. II, with a continuous indoor mercury source (lower to upper quartile 15 to 62 ng m-3). The lowest values were recorded in Bldg. I (lower to upper quartile 3 to 5 ng m-3), where indoor GEM levels were affected mainly by the exhaust of vehicles in the parking lot of the building. The monitoring of GEM indoors (lower to upper quartile 15 to 42 ng m-3), and outdoors (in several heights) of the Bldg. III, revealed that the cleaning up procedure that followed the spill was not adequate. Auxiliary measurements in the first two cases were the indoor microclimatic conditions, as well as the indoor CO2 concentrations, and in the third case the outdoor meteorological data. The exhaust of vehicles, the chemical reagents, and an outdoor mercury spill were found to mainly affect the observed indoor GEM levels. People in Bldg. II and people walking through the area, where Hg0 was spilled, were found to be exposed to concentrations above some guide values.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Mercúrio/análise , Emissões de Veículos/análise
2.
Environ Monit Assess ; 166(1-4): 79-94, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19475486

RESUMO

The objective of this study was to identify seasonal and spatial trends and soil salinization patterns in a part of Rhodope District irrigated land, northeastern Greece, located east of Vistonis Lagoon. The study area is irrigated from a coastal aquifer, where salt water intrusion occurs because of extensive groundwater withdrawals. Fourteen monitoring sites were established in harvest fields in the study area, where soil samples were collected. Electrical conductivity (ECe), pH, and ion concentrations were determined in the saturated paste extract of the soil samples in the laboratory using standard methods. A clear tendency was observed for ECe to increase from April to September, i.e., within the irrigation period, indicating the effect of saline groundwater to soil. In the last years, the change from moderately sensitive (e.g., corn) to moderately tolerant crops (e.g., cotton) in the south part of the study area indicates the impacts of soil salinity. The study proposes management methods to alleviate this problem.


Assuntos
Monitoramento Ambiental , Água Doce/química , Salinidade , Cloreto de Sódio/análise , Poluentes do Solo/análise , Solo , Agricultura , Conservação dos Recursos Naturais , Condutividade Elétrica , Grécia , Concentração de Íons de Hidrogênio , Estações do Ano
3.
J Environ Radioact ; 150: 220-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26372739

RESUMO

Extensive measurements of (222)Rn in the town of Xanthi in N Greece show that the part of the town overlying granite deposits and the outcrop of a uranium ore has exceptionally high indoor radon levels, with monthly means up to 1500 Bq m(-3). A large number of houses (40%) in this part of the town exhibit radon levels above 200 Bq m(-3) while 11% of the houses had radon levels above 400 Bq m(-3). Substantial interannual variability as well as the highest in Europe winter/summer ratios (up to 12) were observed in this part of the town, which consist of traditional stone masonry buildings of the late 19th-early 20th century. Measurements of (238)U and (232)Th content of building materials from these houses as well as radionuclide measurements in different floors show that the high levels of indoor radon measured in these buildings are not due to high radon emanation rates from the building materials themselves but rather due to high radon flux from the soil because of the underlying geology, high radon penetration rates into the buildings from underground due to the lack of solid concrete foundations in these buildings, or a combination thereof. From the meteorological variables studied, highest correlation with indoor (222)Rn was found with temperature (r(2) = 0.65). An indoor radon prognostic regression model using temperature, pressure and precipitation as input was developed, that reproduced indoor radon with r(2) = 0.69. Hence, meteorology is the main driving factor of indoor radon, with temperature being the most important determinant. Preliminary flux measurements indicate that the soil-atmosphere (222)Rn flux should be in the range 150-250 Bq m(-2) h(-1), which is in the upper 10% of flux values for Europe.


Assuntos
Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Radônio/análise , Poluentes Radioativos do Solo/análise , Solo/química , Materiais de Construção/análise , Grécia , Habitação , Monitoramento de Radiação , Radioatividade , Estações do Ano , Urânio/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa