Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Lab Invest ; 103(12): 100258, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37813278

RESUMO

Breast cancer is one of the most prominent types of cancers, in which therapeutic resistance is a major clinical concern. Specific subtypes, such as claudin-low and metaplastic breast carcinoma (MpBC), have been associated with high nongenetic plasticity, which can facilitate resistance. The similarities and differences between these orthogonal subtypes, identified by molecular and histopathological analyses, respectively, remain insufficiently characterized. Furthermore, adequate methods to identify high-plasticity tumors to better anticipate resistance are lacking. Here, we analyzed 11 triple-negative breast tumors, including 3 claudin-low and 4 MpBC, via high-resolution spatial transcriptomics. We combined pathological annotations and deconvolution approaches to precisely identify tumor spots, on which we performed signature enrichment, differential expression, and copy number analyses. We used The Cancer Genome Atlas and Cancer Cell Line Encyclopedia public databases for external validation of expression markers. By focusing our spatial transcriptomic analyses on tumor cells in MpBC samples, we bypassed the negative impact of stromal contamination and identified specific markers that are neither expressed in other breast cancer subtypes nor expressed in stromal cells. Three markers (BMPER, POPDC3, and SH3RF3) were validated in external expression databases encompassing bulk tumor material and stroma-free cell lines. We unveiled that existing bulk expression signatures of high-plasticity breast cancers are relevant in mesenchymal transdifferentiated compartments but can be hindered by abundant stromal cells in tumor samples, negatively impacting their clinical applicability. Spatial transcriptomic analyses constitute powerful tools to identify specific expression markers and could thus enhance diagnosis and clinical care of rare high-plasticity breast cancers.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Perfilação da Expressão Gênica , Mama/metabolismo , Transcriptoma , Claudinas/metabolismo , Prognóstico , Proteínas de Transporte/metabolismo , Proteínas Musculares/metabolismo , Moléculas de Adesão Celular/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Int J Cancer ; 143(9): 2177-2186, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29752723

RESUMO

Suppressor of cytokine signaling (SOCS) family of proteins plays critical role in the regulation of immune responses controlling JAK/STAT mediated inflammatory cytokines. Among the members, SOCS1 and SOCS3 contain a kinase inhibitory region (KIR) and SOCS3 binds to JAK/STAT/gp130 complex by inhibiting the downstream signaling and suppressing inflammatory cytokines. Loss or reduced levels of SOCS3 have been linked to cancer-associated inflammation and suppressive immunity leading to enhanced tumor growth and metastasis. In line with these reports, we previously demonstrated that proteolytic degradation of SOCS3 in triple negative breast cancer (TNBC) subtype drives the expression of inflammatory cytokines. Therefore, we postulated that SOCS3 mimetics might suppress the inflammatory cytokine production in TNBC subtype and inhibit tumor growth and metastasis. Here we designed and characterized five linear peptides derived from the N-terminal region of SOCS3 encompassing regions that interface with the JAK2/gp130 complex using the Circular Dichroism and Surface Plasmon Resonance spectroscopies. The KIRESS peptide resulted the sequence containing the most part of the hot-spots required for binding to JAK2 and was further investigated in vivo in mouse xenografts of MDA-MB-231-luci tumors as models of human TNBC subtype. Expectedly, this peptide showed a significant inhibition of primary tumor growth and pulmonary metastasis. Our studies suggest that SOCS3 peptidomimetics may possess a therapeutic potential in aggressive cancers, such as TNBC subtype, with activated inflammatory cytokines.


Assuntos
Biomimética , Neoplasias Pulmonares/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Sequência de Aminoácidos , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Citocinas/metabolismo , Feminino , Humanos , Janus Quinase 2/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fragmentos de Peptídeos/química , Conformação Proteica , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/química , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Transl Med ; 14: 13, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26762586

RESUMO

BACKGROUND: Naturally occurring polyphenolic compounds from fruits, particularly from blueberries, have been reported to be significantly involved in cancer chemoprevention and chemotherapy. Biotransformation of blueberry juice by Serratia vaccinii increases its polyphenolic content and endows it with anti-inflammatory properties. METHODS: This study evaluated the effect of a polyphenol-enriched blueberry preparation (PEBP) and its non-fermented counterpart (NBJ), on mammary cancer stem cell (CSC) development in in vitro, in vivo and ex vivo settings. Effects of PEBP on cell proliferation, mobility, invasion, and mammosphere formation were measured in vitro in three cell lines: murine 4T1 and human MCF7 and MDA-MB-231. Ex vivo mammosphere formation, tumor growth and metastasis observations were carried out in a BALB/c mouse model. RESULTS: Our research revealed that PEBP influence cellular signaling cascades of breast CSCs, regulating the activity of transcription factors and, consequently, inhibiting tumor growth in vivo by decreasing metastasis and controlling PI3K/AKT, MAPK/ERK, and STAT3 pathways, central nodes in CSC inflammatory signaling. PEBP significantly inhibited cell proliferation of 4T1, MCF-7 and MDA-MB-231. In all cell lines, PEBP reduced mammosphere formation, cell mobility and cell migration. In vivo, PEBP significantly reduced tumor development, inhibited the formation of ex vivo mammospheres, and significantly reduced lung metastasis. CONCLUSIONS: This study showed that polyphenol enrichment of a blueberry preparation by fermentation increases its chemopreventive potential by protecting mice against tumor development, inhibiting the formation of cancer stem cells and reducing lung metastasis. Thus, PEBP may represent a novel complementary alternative medicine therapy and a source for novel therapeutic agents against breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Quimioprevenção , Inflamação/patologia , Células-Tronco Neoplásicas/patologia , Polifenóis/uso terapêutico , Animais , Mirtilos Azuis (Planta)/química , Neoplasias da Mama/complicações , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Fermentação , Humanos , Inflamação/complicações , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Polifenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia
4.
Sci Adv ; 10(7): eadi1736, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354248

RESUMO

In breast cancers, aberrant activation of the RAS/MAPK pathway is strongly associated with mesenchymal features and stemness traits, suggesting an interplay between this mitogenic signaling pathway and epithelial-to-mesenchymal plasticity (EMP). By using inducible models of human mammary epithelial cells, we demonstrate herein that the oncogenic activation of RAS promotes ZEB1-dependent EMP, which is necessary for malignant transformation. Notably, EMP is triggered by the secretion of pro-inflammatory cytokines from neighboring RAS-activated senescent cells, with a prominent role for IL-6 and IL-1α. Our data contrast with the common view of cellular senescence as a tumor-suppressive mechanism and EMP as a process promoting late stages of tumor progression in response to signals from the tumor microenvironment. We highlighted here a pro-tumorigenic cooperation of RAS-activated mammary epithelial cells, which leverages on oncogene-induced senescence and EMP to trigger cellular reprogramming and malignant transformation.


Assuntos
Carcinogênese , Transformação Celular Neoplásica , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Mama , Genes ras , Transdução de Sinais , Senescência Celular/genética , Microambiente Tumoral
5.
BMC Genomics ; 14: 139, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23445407

RESUMO

BACKGROUND: A subset of breast cancer cells displays increased ability to self-renew and reproduce breast cancer heterogeneity. The characterization of these so-called putative breast tumor-initiating cells (BT-ICs) may open the road for novel therapeutic strategies. As microRNAs (miRNAs) control developmental programs in stem cells, BT-ICs may also rely on specific miRNA profiles for their sustained activity. To explore the notion that miRNAs may have a role in sustaining BT-ICs, we performed a comprehensive profiling of miRNA expression in a model of putative BT-ICs enriched by non-attachment growth conditions. RESULTS: We found breast cancer cells grown under non-attachment conditions display a unique pattern of miRNA expression, highlighted by a marked low expression of miR-30 family members relative to parental cells. We further show that miR-30a regulates non-attachment growth. A target screening revealed that miR-30 family redundantly modulates the expression of apoptosis and proliferation-related genes. At least one of these targets, the anti-apoptotic protein AVEN, was able to partially revert the effect of miR-30a overexpression. Finally, overexpression of miR-30a in vivo was associated with reduced breast tumor progression. CONCLUSIONS: miR30-family regulates the growth of breast cancer cells in non-attachment conditions. This is the first analysis of target prediction in a whole family of microRNAs potentially involved in survival of putative BT-ICs.


Assuntos
Neoplasias da Mama/patologia , Perfilação da Expressão Gênica , MicroRNAs/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/genética , Proliferação de Células , Sobrevivência Celular , Transformação Celular Neoplásica , Feminino , Células MCF-7 , Proteínas de Membrana/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Reprodutibilidade dos Testes
6.
Cancer Res Commun ; 3(5): 830-841, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37377900

RESUMO

Gynecologic carcinosarcomas (CS) are biphasic neoplasms composed of carcinomatous (C) and sarcomatous (S) malignant components. Because of their rarity and histologic complexity, genetic and functional studies on CS are scarce and the mechanisms of initiation and development remain largely unknown. Whole-genome analysis of the C and S components reveals shared genomic alterations, thus emphasizing the clonal evolution of CS. Reconstructions of the evolutionary history of each tumor further reveal that C and S samples are composed of both ancestral cell populations and component-specific subclones, supporting a common origin followed by distinct evolutionary trajectories. However, while we do not find any recurrent genomic features associated with phenotypic divergence, transcriptomic and methylome analyses identify a common mechanism across the cohort, the epithelial-to-mesenchymal transition (EMT), suggesting a role for nongenetic factors in inflicting changes to cellular fate. Altogether, these data accredit the hypothesis that CS tumors are driven by both clonal evolution and transcriptomic reprogramming, essential for susceptibility to transdifferentiation upon encountering environmental cues, thus linking CS heterogeneity to genetic, transcriptomic, and epigenetic influences. Significance: We have provided a detailed characterization of the genomic landscape of CS and identified EMT as a common mechanism associated with phenotypic divergence, linking CS heterogeneity to genetic, transcriptomic, and epigenetic influences.


Assuntos
Carcinossarcoma , Neoplasias Ovarianas , Sarcoma , Humanos , Feminino , Carcinossarcoma/genética , Neoplasias Ovarianas/genética
7.
Cancers (Basel) ; 13(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34572787

RESUMO

Senescence is a dynamic, multistep program that results in permanent cell cycle arrest and is triggered by developmental or environmental, oncogenic or therapy-induced stress signals. Senescence is considered as a tumor suppressor mechanism that prevents the risk of neoplastic transformation by restricting the proliferation of damaged cells. Cells undergoing senescence sustain important morphological changes, chromatin remodeling and metabolic reprogramming, and secrete pro-inflammatory factors termed senescence-associated secretory phenotype (SASP). SASP activation is required for the clearance of senescent cells by innate immunity. Therefore, escape from senescence and the associated immune editing would be a prerequisite for tumor initiation and progression as well as therapeutic resistance. One of the possible mechanisms for overcoming senescence could be the acquisition of cellular plasticity resulting from the accumulation of genomic alterations and genetic and epigenetic reprogramming. The modified composition of the SASP produced by these reprogrammed cancer cells would create a permissive environment, allowing their immune evasion. Additionally, the SASP produced by cancer cells could enhance the cellular plasticity of neighboring cells, thus hindering their recognition by the immune system. Here, we propose a comprehensive review of the literature, highlighting the role of cellular plasticity in the pro-tumoral activity of senescence in normal cells and in the cancer context.

8.
Nat Commun ; 11(1): 3431, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647202

RESUMO

Claudin-low breast cancers are aggressive tumors defined by the low expression of key components of cellular junctions, associated with mesenchymal and stemness features. Although they are generally considered as the most primitive breast malignancies, their histogenesis remains elusive. Here we show that this molecular subtype of breast cancers exhibits a significant diversity, comprising three main subgroups that emerge from unique evolutionary processes. Genetic, gene methylation and gene expression analyses reveal that two of the subgroups relate, respectively, to luminal breast cancers and basal-like breast cancers through the activation of an EMT process over the course of tumor progression. The third subgroup is closely related to normal human mammary stem cells. This unique subgroup of breast cancers shows a paucity of genomic aberrations and a low frequency of TP53 mutations, supporting the emerging notion that the intrinsic properties of the cell-of-origin constitute a major determinant of the genetic history of tumorigenesis.


Assuntos
Neoplasias da Mama/metabolismo , Claudinas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Genoma Humano , Humanos , Ploidias , Transdução de Sinais/genética
9.
iScience ; 23(6): 101141, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32450513

RESUMO

Epigenetic deregulation of gene transcription is central to cancer cell plasticity and malignant progression but remains poorly understood. We found that the uncharacterized epigenetic factor chromodomain on Y-like 2 (CDYL2) is commonly over-expressed in breast cancer, and that high CDYL2 levels correlate with poor prognosis. Supporting a functional role for CDYL2 in malignancy, it positively regulated breast cancer cell migration, invasion, stem-like phenotypes, and epithelial-to-mesenchymal transition. CDYL2 regulation of these plasticity-associated processes depended on signaling via p65/NF-κB and STAT3. This, in turn, was downstream of CDYL2 regulation of MIR124 gene transcription. CDYL2 co-immunoprecipitated with G9a/EHMT2 and GLP/EHMT1 and regulated the chromatin enrichment of G9a and EZH2 at MIR124 genes. We propose that CDYL2 contributes to poor prognosis in breast cancer by recruiting G9a and EZH2 to epigenetically repress MIR124 genes, thereby promoting NF-κB and STAT3 signaling, as well as downstream cancer cell plasticity and malignant progression.

10.
Oncogene ; 38(4): 469-482, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30166590

RESUMO

TNFα is a pleiotropic cytokine which fuels tumor cell growth, invasion, and metastasis in some malignancies, while in others it induces cytotoxic cell death. However, the molecular mechanism by which TNFα exerts its diverse effects on breast cancer subtypes remains elusive. Using in vitro assays and mouse xenografts, we show here that TNFα contributes to the aggressive properties of triple negative breast cancer (TNBC) cell lines via upregulation of TNFAIP3(A20). In a striking contrast, TNFα induces a potent cytotoxic cell death in luminal (ER+) breast cancer cell lines which fail to upregulate A20 expression. Overexpression of A20 not only protects luminal breast cancer cell lines from TNFα-induced cell death via inducing HSP70-mediated anti-apoptotic pathway but also promotes a robust EMT/CSC phenotype by activating the pStat3-mediated inflammatory signaling. Furthermore, A20 overexpression in luminal breast cancer cells induces aggressive metastatic properties in mouse xenografts via generating a permissive inflammatory microenvironment constituted by granulocytic-MDSCs. Collectively, our results reveal a mechanism by which A20 mediates pleiotropic effects of TNFα playing role in aggressive behaviors of TNBC subtype while its deficiency results in TNFα-induced apoptotic cell death in luminal breast cancer subtype.


Assuntos
Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Pleiotropia Genética , Proteínas de Neoplasias/fisiologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Apoptose/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Proteínas de Choque Térmico HSP72/antagonistas & inibidores , Proteínas de Choque Térmico HSP72/fisiologia , Xenoenxertos , Humanos , Inflamação , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica/genética , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Nucleosídeos de Purina/farmacologia , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/biossíntese , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/genética
11.
Oncogene ; 38(28): 5749, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31197211

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Nat Commun ; 10(1): 1430, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926774

RESUMO

Although clinically apparent metastasis is associated with late stages of cancer development, micro-metastatic dissemination may be an early event. However, the fate of these early disseminated tumor cells (DTC) remains elusive. We show that despite their capacity to disseminate into secondary organs, 4T1 tumor models develop overt metastasis while EMT6-tumor bearing mice clear DTCs shed from primary tumors as well as those introduced by intravenous (IV) injection. Following the surgical resection of primary EMT6 tumors, mice do not develop detectable metastasis and reject IV-injected tumor cells. In contrast, these cells readily grow and metastasize in immuno-deficient athymic or Rag2-/- mice, an effect mimicked by CD8+ T-cell depletion in immunocompetent mice. Furthermore, recombinant G-CSF or adoptive transfer of granulocytic-MDSCs isolated from 4T1 tumor-bearing mice, induce metastasis by suppressing CD8+ T-cells in EMT6-primed mice. Our studies support the concept of immune surveillance providing molecular insights into the immune mechanisms during tumor progression.


Assuntos
Imunidade , Neoplasias/imunologia , Neoplasias/patologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Humanos , Subpopulações de Linfócitos/imunologia , Camundongos , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Análise de Sobrevida , Cauda/irrigação sanguínea , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/cirurgia , Veias/patologia
13.
Nat Commun ; 8: 14979, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28382931

RESUMO

It is widely accepted that dynamic and reversible tumour cell plasticity is required for metastasis, however, in vivo steps and molecular mechanisms are poorly elucidated. We demonstrate here that monocytic (mMDSC) and granulocytic (gMDSC) subsets of myeloid-derived suppressor cells infiltrate in the primary tumour and distant organs with different time kinetics and regulate spatiotemporal tumour plasticity. Using co-culture experiments and mouse transcriptome analyses in syngeneic mouse models, we provide evidence that tumour-infiltrated mMDSCs facilitate tumour cell dissemination from the primary site by inducing EMT/CSC phenotype. In contrast, pulmonary gMDSC infiltrates support the metastatic growth by reverting EMT/CSC phenotype and promoting tumour cell proliferation. Furthermore, lung-derived gMDSCs isolated from tumour-bearing animals enhance metastatic growth of already disseminated tumour cells. MDSC-induced 'metastatic gene signature' derived from murine syngeneic model predicts poor patient survival in the majority of human solid tumours. Thus spatiotemporal MDSC infiltration may have clinical implications in tumour progression.


Assuntos
Perfilação da Expressão Gênica/métodos , Granulócitos/metabolismo , Monócitos/metabolismo , Células Supressoras Mieloides/metabolismo , Neoplasias/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Cultivadas , Feminino , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia
14.
Sci Rep ; 7(1): 5418, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710461

RESUMO

The heat shock response is characterized by the transcriptional activation of both hsp genes and noncoding and repeated satellite III DNA sequences located at pericentric heterochromatin. Both events are under the control of Heat Shock Factor I (HSF1). Here we show that under heat shock, HSF1 recruits major cellular acetyltransferases, GCN5, TIP60 and p300 to pericentric heterochromatin leading to a targeted hyperacetylation of pericentric chromatin. Redistribution of histone acetylation toward pericentric region in turn directs the recruitment of Bromodomain and Extra-Terminal (BET) proteins BRD2, BRD3, BRD4, which are required for satellite III transcription by RNAP II. Altogether we uncover here a critical role for HSF1 in stressed cells relying on the restricted use of histone acetylation signaling over pericentric heterochromatin (HC).


Assuntos
Resposta ao Choque Térmico , Heterocromatina/genética , Transdução de Sinais/genética , Ativação Transcricional , Animais , Células COS , Proteínas de Ciclo Celular , Chlorocebus aethiops , Células HeLa , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Heterocromatina/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Cancer Immunol Res ; 5(4): 330-344, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28264810

RESUMO

Triple-negative breast cancer (TNBC) cells are modulated in reaction to tumor-infiltrating lymphocytes. However, their specific responses to this immune pressure are unknown. In order to address this question, we first used mRNA sequencing to compare the immunophenotype of the TNBC cell line MDA-MB-231 and the luminal breast cancer cell line MCF7 after both were cocultured with activated human T cells. Despite similarities in the cytokine-induced immune signatures of the two cell lines, MDA-MD-231 cells were able to transcribe more IDO1 than MCF7 cells. The two cell lines had similar upstream JAK/STAT1 signaling and IDO1 mRNA stability. However, using a series of breast cancer cell lines, IFNγ stimulated IDO1 protein expression and enzymatic activity only in ER-, not ER+, cell lines. Treatment with 5-aza-deoxycytidine reversed the suppression of IDO1 expression in MCF7 cells, suggesting that DNA methylation was potentially involved in IDO1 induction. By analyzing several breast cancer datasets, we discovered subtype-specific mRNA and promoter methylation differences in IDO1, with TNBC/basal subtypes exhibiting lower methylation/higher expression and ER+/luminal subtypes exhibiting higher methylation/lower expression. We confirmed this trend of IDO1 methylation by bisulfite pyrosequencing breast cancer cell lines and an independent cohort of primary breast tumors. Taken together, these findings suggest that IDO1 promoter methylation regulates anti-immune responses in breast cancer subtypes and could be used as a predictive biomarker for IDO1 inhibitor-based immunotherapy. Cancer Immunol Res; 5(4); 330-44. ©2017 AACR.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Metilação de DNA , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Regiões Promotoras Genéticas , Linfócitos T/imunologia , Linfócitos T/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Citocinas/metabolismo , Ativação Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Janus Quinases/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Estabilidade Proteica , Estabilidade de RNA , RNA Mensageiro/genética , Fator de Transcrição STAT1/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade
16.
Cancer Res ; 76(2): 480-90, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26744529

RESUMO

Elevated levels of the proinflammatory cytokine IL6 are associated with poor survival outcomes in many cancers. Antibodies targeting IL6 and its receptor have been developed for chronic inflammatory disease, but they have not yet been shown to clearly benefit cancer patients, possibly due to antibody potency or the settings in which they have been tested. In this study, we describe the development of a novel high-affinity anti-IL6 antibody, MEDI5117, which features an extended half-life and potent inhibitory effects on IL6 biologic activity. MEDI5117 inhibited IL6-mediated activation of STAT3, suppressing the growth of several tumor types driven by IL6 autocrine signaling. In the same models, MEDI5117 displayed superior preclinical activity relative to a previously developed anti-IL6 antibody. Consistent with roles for IL6 in promoting tumor angiogenesis, we found that MEDI5117 inhibited the growth of endothelial cells, which can produce IL6 and support tumorigenesis. Notably, in tumor xenograft assays in mice, we documented the ability of MEDI5117 to enhance the antitumor activities of chemotherapy or gefitinib in combination treatment regimens. MEDI5117 also displayed robust activity on its own against trastuzumab-resistant HER2(+) tumor cells by targeting the CD44(+)CD24(-) cancer stem cell population. Collectively, our findings extend the evidence of important pleiotropic roles of IL6 in tumorigenesis and drug resistance, and offer a preclinical proof of concept for the use of IL6 antibodies in combination regimens to heighten therapeutic responses and overcome drug resistance.


Assuntos
Interleucina-6/metabolismo , Neoplasias/genética , Trastuzumab/uso terapêutico , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Transdução de Sinais , Trastuzumab/administração & dosagem
18.
Sci Rep ; 5: 15821, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26522776

RESUMO

Although trastuzumab is an effective treatment in early stage HER2(+) breast cancer the majority of advanced HER2(+) breast cancers develop trastuzumab resistance, especially in the 40% of breast cancers with loss of PTEN. However, HER2(+) breast cancer patients continue to receive trastuzumab regardless PTEN status and the consequence of therapy in these patients is unknown. We demonstrate that continued use of trastuzumab in HER2(+) cells with loss of PTEN induces the epithelial-mesenchymal transition (EMT) and transform HER2(+) to a triple negative breast cancer. These transformed cells exhibited mesenchymal morphology and gene expression markers, while parent HER2(+) cells showed epithelial morphology and markers. The transformed cells exhibited loss of dependence on ERBB family signaling (such as HER2, HER3, HER4, BTC, HRG, EGF) and reduced estrogen and progesterone receptors. Continued use of trastuzumab in HER2(+) PTEN(-) cells increased the frequency of cancer stem cells (CSCs) and metastasis potential. Strikingly, parental HER2(+) cells and transformed resistant cells respond to treatment differently. Transformed resistant cells were sensitive to chemical probe (sulforaphane) through inhibition of IL-6/STAT3/NF-κB positive feedback loop whereas parental HER2(+) cells did not respond. This data suggests that trastuzumab resistance in HER2(+) PTEN- breast cancer induces EMT and subtype switching, which requires unique treatment options.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores de Progesterona/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo
19.
Mol Cancer Ther ; 14(3): 779-787, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25673823

RESUMO

Developmental pathways such as Notch play a pivotal role in tissue-specific stem cell self-renewal as well as in tumor development. However, the role of Notch signaling in breast cancer stem cells (CSC) remains to be determined. We utilized a lentiviral Notch reporter system to identify a subset of cells with a higher Notch activity (Notch(+)) or reduced activity (Notch(-)) in multiple breast cancer cell lines. Using in vitro and mouse xenotransplantation assays, we investigated the role of the Notch pathway in breast CSC regulation. Breast cancer cells with increased Notch activity displayed increased sphere formation as well as expression of breast CSC markers. Interestingly Notch(+) cells displayed higher Notch4 expression in both basal and luminal breast cancer cell lines. Moreover, Notch(+) cells demonstrated tumor initiation capacity at serial dilutions in mouse xenografts, whereas Notch(-) cells failed to generate tumors. γ-Secretase inhibitor (GSI), a Notch blocker but not a chemotherapeutic agent, effectively targets these Notch(+) cells in vitro and in mouse xenografts. Furthermore, elevated Notch4 and Hey1 expression in primary patient samples correlated with poor patient survival. Our study revealed a molecular mechanism for the role of Notch-mediated regulation of breast CSCs and provided a compelling rationale for CSC-targeted therapeutics.


Assuntos
Neoplasias da Mama/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores Notch/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Xenoenxertos , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa