RESUMO
Defining long-term protective immunity to SARS-CoV-2 is one of the most pressing questions of our time and will require a detailed understanding of potential ways this virus can evolve to escape immune protection. Immune protection will most likely be mediated by antibodies that bind to the viral entry protein, spike (S). Here, we used Phage-DMS, an approach that comprehensively interrogates the effect of all possible mutations on binding to a protein of interest, to define the profile of antibody escape to the SARS-CoV-2 S protein using coronavirus disease 2019 (COVID-19) convalescent plasma. Antibody binding was common in two regions, the fusion peptide and the linker region upstream of the heptad repeat region 2. However, escape mutations were variable within these immunodominant regions. There was also individual variation in less commonly targeted epitopes. This study provides a granular view of potential antibody escape pathways and suggests there will be individual variation in antibody-mediated virus evolution.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Epitopos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Algoritmos , COVID-19/terapia , COVID-19/virologia , Linhagem Celular , Biblioteca Gênica , Humanos , Imunização Passiva , Mutação , Domínios Proteicos , SARS-CoV-2/genética , Software , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Soroterapia para COVID-19RESUMO
The vaccine-mediated elicitation of antibodies (Abs) capable of neutralizing diverse HIV-1 strains has been a long-standing goal. To understand how broadly neutralizing antibodies (bNAbs) can be elicited, we identified, characterized, and tracked five neutralizing Ab lineages targeting the HIV-1-fusion peptide (FP) in vaccinated macaques over time. Genetic and structural analyses revealed two of these lineages to belong to a reproducible class capable of neutralizing up to 59% of 208 diverse viral strains. B cell analysis indicated each of the five lineages to have been initiated and expanded by FP-carrier priming, with envelope (Env)-trimer boosts inducing cross-reactive neutralization. These Abs had binding-energy hotspots focused on FP, whereas several FP-directed Abs induced by immunization with Env trimer-only were less FP-focused and less broadly neutralizing. Priming with a conserved subregion, such as FP, can thus induce Abs with binding-energy hotspots coincident with the target subregion and capable of broad neutralization.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Peptídeos/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/classificação , Linfócitos B/citologia , Linfócitos B/metabolismo , Cristalografia por Raios X , Feminino , Células HEK293 , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/classificação , HIV-1/metabolismo , Humanos , Macaca mulatta , Masculino , Peptídeos/química , Estrutura Terciária de Proteína , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismoRESUMO
HIV-1 broadly neutralizing antibodies (bnAbs) develop in a subset of infected adults and exhibit high levels of somatic hypermutation (SHM) due to years of affinity maturation. There is no precedent for eliciting highly mutated antibodies by vaccination, nor is it practical to wait years for a desired response. Infants develop broad responses early, which may suggest a more direct path to generating bnAbs. Here, we isolated ten neutralizing antibodies (nAbs) contributing to plasma breadth of an infant at â¼1 year post-infection, including one with cross-clade breadth. The nAbs bind to envelope trimer from the transmitted virus, suggesting that this interaction may have initiated development of the infant nAbs. The infant cross-clade bnAb targets the N332 supersite on envelope but, unlike adult bnAbs targeting this site, lacks indels and has low SHM. The identification of this infant bnAb illustrates that HIV-1-specific neutralization breadth can develop without prolonged affinity maturation and extensive SHM.
Assuntos
Anticorpos Neutralizantes/genética , Anticorpos Anti-HIV/genética , Hipermutação Somática de Imunoglobulina , Adulto , Anticorpos Neutralizantes/imunologia , Epitopos , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/sangue , Infecções por HIV/imunologia , Humanos , Lactente , Leucócitos MononuclearesRESUMO
Anti-HIV broadly neutralizing antibodies (bnAbs) have revealed vaccine targets on the virus's envelope (Env) protein and are themselves promising immunotherapies. The efficacy of bnAb-based therapies and vaccines depends in part on how readily the virus can escape neutralization. Although structural studies can define contacts between bnAbs and Env, only functional studies can define mutations that confer escape. Here, we mapped how all possible single amino acid mutations in Env affect neutralization of HIV by nine bnAbs targeting five epitopes. For most bnAbs, mutations at only a small fraction of structurally defined contact sites mediated escape, and most escape occurred at sites near, but not in direct contact with, the antibody. The Env mutations selected by two pooled bnAbs were similar to those expected from the combination of the bnAbs's independent action. Overall, our mutation-level antigenic atlas provides a comprehensive dataset for understanding viral immune escape and refining therapies and vaccines.
Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Evasão da Resposta Imune/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/metabolismo , Mapeamento de Epitopos/métodos , Epitopos/genética , Epitopos/metabolismo , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Evasão da Resposta Imune/genética , Mutação , Testes de Neutralização , Ligação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismoRESUMO
The SARS-CoV-2 virus responsible for the COVID-19 global pandemic has exhibited a striking capacity for viral evolution that drives continued evasion from vaccine and infection-induced immune responses. Mutations in the receptor binding domain of the S1 subunit of the spike glycoprotein have led to considerable escape from antibody responses, reducing the efficacy of vaccines and monoclonal antibody (mAb) therapies. Therefore, there is a need to interrogate more constrained regions of spike, such as the S2 subdomain. Here, we present a collection of S2 mAbs from two SARS-CoV-2 convalescent individuals that target multiple regions in S2, including regions outside of those commonly reported. One of the S2 mAbs, C20.119, which bound to a highly conserved epitope in the fusion peptide, was able to broadly neutralize across SARS-CoV-2 variants, SARS-CoV-1, and closely related zoonotic sarbecoviruses. The majority of the mAbs were non-neutralizing; however, many of them could mediate antibody-dependent cellular cytotoxicity (ADCC) at levels similar to the S1-targeting mAb S309 that was previously authorized for treatment of SARS-CoV-2 infections. Several of the mAbs with ADCC function also bound to spike trimers from other human coronaviruses (HCoVs), such as MERS-CoV and HCoV-HKU1. Our findings suggest S2 mAbs can target diverse epitopes in S2, including functional mAbs with HCoV and sarbecovirus breadth that likely target functionally constrained regions of spike. These mAbs could be developed for potential future pandemics, while also providing insight into ideal epitopes for eliciting a broad HCoV response.
Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/imunologia , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Pandemias , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Citotoxicidade Celular Dependente de Anticorpos/imunologiaRESUMO
The antiviral benefit of antibodies can be compromised by viral escape especially for rapidly evolving viruses. Therefore, durable, effective antibodies must be both broad and potent to counter newly emerging, diverse strains. Discovery of such antibodies is critically important for SARS-CoV-2 as the global emergence of new variants of concern (VOC) has compromised the efficacy of therapeutic antibodies and vaccines. We describe a collection of broad and potent neutralizing monoclonal antibodies (mAbs) isolated from an individual who experienced a breakthrough infection with the Delta VOC. Four mAbs potently neutralize the Wuhan-Hu-1 vaccine strain, the Delta VOC, and also retain potency against the Omicron VOCs through BA.4/BA.5 in both pseudovirus-based and authentic virus assays. Three mAbs also retain potency to recently circulating VOCs XBB.1.5 and BQ.1.1 and one also potently neutralizes SARS-CoV-1. The potency of these mAbs was greater against Omicron VOCs than all but one of the mAbs that had been approved for therapeutic applications. The mAbs target distinct epitopes on the spike glycoprotein, three in the receptor-binding domain (RBD) and one in an invariant region downstream of the RBD in subdomain 1 (SD1). The escape pathways we defined at single amino acid resolution with deep mutational scanning show they target conserved, functionally constrained regions of the glycoprotein, suggesting escape could incur a fitness cost. Overall, these mAbs are unique in their breadth across VOCs, their epitope specificity, and include a highly potent mAb targeting a rare epitope outside of the RBD in SD1.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Infecções Irruptivas , Anticorpos Monoclonais , Anticorpos Neutralizantes , Epitopos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos AntiviraisRESUMO
Age at HIV acquisition may influence viral pathogenesis in infants, and yet infection timing (i.e. date of infection) is not always known. Adult studies have estimated infection timing using rates of HIV RNA diversification, however, it is unknown whether adult-trained models can provide accurate predictions when used for infants due to possible differences in viral dynamics. While rates of viral diversification have been well defined for adults, there are limited data characterizing these dynamics for infants. Here, we performed Illumina sequencing of gag and pol using longitudinal plasma samples from 22 Kenyan infants with well-characterized infection timing. We used these data to characterize viral diversity changes over time by designing an infant-trained Bayesian hierarchical regression model that predicts time since infection using viral diversity. We show that diversity accumulates with time for most infants (median rate within pol = 0.00079 diversity/month), and diversity accumulates much faster than in adults (compare previously-reported adult rate within pol = 0.00024 diversity/month [1]). We find that the infant rate of viral diversification varies by individual, gene region, and relative timing of infection, but not by set-point viral load or rate of CD4+ T cell decline. We compare the predictive performance of this infant-trained Bayesian hierarchical regression model with simple linear regression models trained using the same infant data, as well as existing adult-trained models [1]. Using an independent dataset from an additional 15 infants with frequent HIV testing to define infection timing, we demonstrate that infant-trained models more accurately estimate time since infection than existing adult-trained models. This work will be useful for timing HIV acquisition for infants with unknown infection timing and for refining our understanding of how viral diversity accumulates in infants, both of which may have broad implications for the future development of infant-specific therapeutic and preventive interventions.
Assuntos
Infecções por HIV , Lactente , Adulto , Humanos , Teorema de Bayes , Quênia/epidemiologia , Linfócitos T CD4-Positivos , Carga ViralRESUMO
SUMMARY: We present the phippery software suite for analyzing data from phage display methods that use immunoprecipitation and deep sequencing to capture antibody binding to peptides, often referred to as PhIP-Seq. It has three main components that can be used separately or in conjunction: (i) a Nextflow pipeline, phip-flow, to process raw sequencing data into a compact, multidimensional dataset format and allows for end-to-end automation of reproducible workflows. (ii) a Python API, phippery, which provides interfaces for tasks such as count normalization, enrichment calculation, multidimensional scaling, and more, and (iii) a Streamlit application, phip-viz, as an interactive interface for visualizing the data as a heatmap in a flexible manner. AVAILABILITY AND IMPLEMENTATION: All software packages are publicly available under the MIT License. The phip-flow pipeline: https://github.com/matsengrp/phip-flow. The phippery library: https://github.com/matsengrp/phippery. The phip-viz Streamlit application: https://github.com/matsengrp/phip-viz.
Assuntos
Imidazóis , Software , Biblioteca Gênica , PeptídeosRESUMO
Macaques are a commonly used model for studying immunity to human viruses, including for studies of SARS-CoV-2 infection and vaccination. However, it is unknown whether macaque antibody responses resemble the response in humans. To answer this question, we employed a phage-based deep mutational scanning approach (Phage-DMS) to compare which linear epitopes are targeted on the SARS-CoV-2 Spike protein in convalescent humans, convalescent (re-infected) rhesus macaques, mRNA-vaccinated humans, and repRNA-vaccinated pigtail macaques. We also used Phage-DMS to determine antibody escape pathways within each epitope, enabling a granular comparison of antibody binding specificities at the locus level. Overall, we identified some common epitope targets in both macaques and humans, including in the fusion peptide (FP) and stem helix-heptad repeat 2 (SH-H) regions. Differences between groups included a response to epitopes in the N-terminal domain (NTD) and C-terminal domain (CTD) in vaccinated humans but not vaccinated macaques, as well as recognition of a CTD epitope and epitopes flanking the FP in convalescent macaques but not convalescent humans. There was also considerable variability in the escape pathways among individuals within each group. Sera from convalescent macaques showed the least variability in escape overall and converged on a common response with vaccinated humans in the SH-H epitope region, suggesting highly similar antibodies were elicited. Collectively, these findings suggest that the antibody response to SARS-CoV-2 in macaques shares many features with humans, but with substantial differences in the recognition of certain epitopes and considerable individual variability in antibody escape profiles, suggesting a diverse repertoire of antibodies that can respond to major epitopes in both humans and macaques. Differences in macaque species and exposure type may also contribute to these findings.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Epitopos , Humanos , Macaca mulatta , Glicoproteína da Espícula de Coronavírus , VacinaçãoRESUMO
BACKGROUND: Sexual violence (SV) increases HIV susceptibility in a sustained manner. This study evaluated genital cytokines and colposcopy findings in women reporting both recent and more remote SV.Methods: A cross-sectional study of HIV-1 negative Kenyan women who engage in sex work (WESW) was performed. Cervicovaginal fluid was collected by menstrual cup and cytokines (IFNγ, TNFα, IL-1ß, IL-6, IL-10, MIP-1α, MIP-1ß and CXCL10) measured using chemiluminescence. Cervical injury was assessed by colposcopy. Associations between recent (≤30 days prior), more remote (>30 days prior) and no (reference category) SV exposure and cytokine concentrations were evaluated using linear regression. RESULTS: Among 282 participants, 25 (8.9%) reported recent SV and 123 (43.6%) reported more remote SV. Only two cytokines (IL-10 and CXCL10) were associated with the 3-category SV variable in bivariable modeling at the pre-specified cut-off (p < 0.2) and carried forward. In multivariable analyses, more remote SV (ß = 0.72, 95% CI 0.06, 1.38; p = 0.03), but not recent SV (ß = 0.20, 95%CI -0.99, 1.39; p = 0.74) was associated with cervicovaginal IL-10 compared to no SV. Recent (ß = 0.36, 95% CI -0.94, 1.67; p = 0.58) and more remote (ß = 0.51, 95% CI -0.21, 1.24; p = 0.16) SV were not associated with CXCL10 compared to no SV. Cervical epithelial friability (χ2 = 1.3, p = 0.51), erythema (χ2 = 2.9, p = 0.24), vascular disruption (χ2 = 1.4; p = 0.50), epithelial disruption (χ2 = 2.6, p = 0.27), or any colposcopy finding (χ2 = 1.2, p = 0.54) were not associated with SV category by chi-square test. CONCLUSIONS: The mechanism linking SV to sustained increases in HIV susceptibility may not be related to persistent genital inflammation or injury.
RESUMO
A multitude of enzyme-linked immunosorbent assays (ELISAs) has been developed to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies since the coronavirus disease 2019 pandemic started in late 2019. Assessing the reliability of these assays in diverse global populations is critical. This study compares the use of the commercially available Platelia Total Ab Assay (Bio-Rad) nucleocapsid ELISA to the widely used Mount Sinai spike IgG ELISA in a Kenyan population seroprevalence study. Using longitudinal plasma specimens collected from a mother-infant cohort living in Nairobi, Kenya between May 2019 and December 2020, this study demonstrates that the two assays have a high qualitative agreement (92.7%) and strong correlation of antibody levels (R2 = 0.973) in repeated measures. Within this cohort, seroprevalence detected by either ELISA closely resembled previously published seroprevalence estimates for Kenya during the sampling period and no significant difference in the incidence of SARS-CoV-2 antibody detection by either assay was observed. Assay comparability was not affected by HIV exposure status. These data support the use of the Platelia SARS-CoV-2 Total Ab ELISA as a suitable high-throughput method for seroprevalence studies in Kenya.
Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Lactente , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Quênia/epidemiologia , Estudos Soroepidemiológicos , Reprodutibilidade dos Testes , Ensaio de Imunoadsorção Enzimática/métodos , Nucleocapsídeo , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus , Sensibilidade e EspecificidadeRESUMO
A reservoir of HIV-infected cells that persists despite suppressive antiretroviral therapy (ART) is the source of viral rebound upon ART cessation and the major barrier to a cure. Understanding reservoir seeding dynamics will help identify the best timing for HIV cure strategies. Here we characterize reservoir seeding using longitudinal samples from before and after ART initiation in individuals who sequentially became infected with genetically distinct HIV variants (superinfected). We previously identified cases of superinfection in a cohort of Kenyan women, and the dates of both initial infection and superinfection were determined. Six women, superinfected 0.2-5.2 years after initial infection, were subsequently treated with ART 5.4-18.0 years after initial infection. We performed next-generation sequencing of HIV gag and env RNA from plasma collected during acute infection as well as every ~2 years thereafter until ART initiation, and of HIV DNA from PBMCs collected 0.9-4.8 years after viral suppression on ART. We assessed phylogenetic relationships between HIV DNA reservoir sequences and longitudinal plasma RNA sequences prior to ART, to determine proportions of initial and superinfecting variants in the reservoir. The proportions of initial and superinfection lineage variants present in the HIV DNA reservoir were most similar to the proportions present in HIV RNA immediately prior to ART initiation. Phylogenetic analysis confirmed that the majority of HIV DNA reservoir sequences had the smallest pairwise distance to RNA sequences from timepoints closest to ART initiation. Our data suggest that while reservoir cells are created throughout pre-ART infection, the majority of HIV-infected cells that persist during ART entered the reservoir near the time of ART initiation. We estimate the half-life of pre-ART DNA reservoir sequences to be ~25 months, which is shorter than estimated reservoir decay rates during suppressive ART, implying continual decay and reseeding of the reservoir up to the point of ART initiation.
Assuntos
DNA Viral , Infecções por HIV , HIV-1 , Filogenia , Produtos do Gene env do Vírus da Imunodeficiência Humana , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Adulto , DNA Viral/sangue , DNA Viral/genética , Feminino , Seguimentos , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , HIV-1/genética , HIV-1/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Quênia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismoRESUMO
Infants of HIV-positive mothers can acquire HIV infection by various routes, but even in the absence of antiviral treatment, the majority of these infants do not become infected. There is evidence that maternal antibodies provide some protection from infection, but gestational maternal antibodies have not yet been characterized in detail. One of the most studied vertically infected infants is BG505, as the virus from this infant yielded an Envelope protein that was successfully developed as a stable trimer. Here, we isolated and characterized 39 HIV-specific neutralizing monoclonal antibodies (nAbs) from MG505, the mother of BG505, at a time point just prior to vertical transmission. These nAbs belonged to 21 clonal families and employed a variety of VH genes. Many were specific for the HIV-1 Env V3 loop, and this V3 specificity correlated with measurable antibody-dependent cellular cytotoxicity (ADCC) activity. The isolated nAbs did not recapitulate the full breadth of heterologous or autologous virus neutralization by contemporaneous plasma. Notably, we found that the V3-targeting nAb families neutralized one particular maternal Env variant, even though all tested variants had low V3 sequence diversity and were measurably bound by these nAbs. None of the nAbs neutralized BG505 transmitted virus. Furthermore, the MG505 nAb families were found at relatively low frequencies within the maternal B cell repertoire; all were less than 0.25% of total IgG sequences. Our findings illustrate an example of the diversity of HIV-1 nAbs within one mother, cumulatively resulting in a collection of antibody specificities that can contribute to the transmission bottleneck.IMPORTANCE Mother-to-child-transmission of HIV-1 offers a unique setting in which maternal antibodies both within the mother and passively transferred to the infant are present at the time of viral exposure. Untreated HIV-exposed human infants are infected at a rate of 30 to 40%, meaning that some infants do not get infected despite continued exposure to virus. Since the potential of HIV-specific immune responses to provide protection against HIV is a central goal of HIV vaccine design, understanding the nature of maternal antibodies may provide insights into immune mechanisms of protection. In this study, we isolated and characterized HIV-specific antibodies from the mother of an infant whose transmitted virus has been well studied.
Assuntos
Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos , Epitopos/imunologia , Feminino , Infecções por HIV/virologia , Humanos , Lactente , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Gravidez , Complicações Infecciosas na Gravidez/virologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologiaRESUMO
HIV-1 does not persistently infect macaques due in part to restriction by several macaque host factors. This has been partially circumvented by generating chimeric SIV/HIV-1 viruses (SHIVs) that encode SIV antagonist of known restriction factors. However, most SHIVs replicate poorly in macaques unless they are further adapted in culture and/or macaques (adapted SHIVs). Therefore, development of SHIVs encoding HIV-1 sequences derived directly from infected humans without adaptation (unadapted SHIVs) has been challenging. In contrast to the adapted SHIVs, the unadapted SHIVs have lower replication kinetics in macaque lymphocytes and are sensitive to type-1 interferon (IFN). The HIV-1 Envelope (Env) in the chimeric virus determines both the reduced replication and the IFN-sensitivity differences. There is limited information on macaque restriction factors that specifically limit replication of the more biologically relevant, unadapted SHIV variants. In order to identify the IFN-induced host factor(s) that could contribute to the inhibition of SHIVs in macaque lymphocytes, we measured IFN-induced gene expression in immortalized pig-tailed macaque (Ptm) lymphocytes using RNA-Seq. We found 147 genes that were significantly upregulated upon IFN treatment in Ptm lymphocytes and 31/147 were identified as genes that encode transmembrane helices and thus are likely present in membranes where interaction with viral Env is plausible. Within this group of upregulated genes with putative membrane-localized proteins, we identified several interferon-induced transmembrane protein (IFITM) genes, including several previously uncharacterized Ptm IFITM3-related genes. An evolutionary genomic analysis of these genes suggests the genes are IFITM3 duplications not found in humans that are both within the IFITM locus and also dispersed elsewhere in the Ptm genome. We observed that Ptm IFITMs are generally packaged at higher levels in unadapted SHIVs when compared to adapted SHIVs. CRISPR/Cas9-mediated knockout of Ptm IFITMs showed that depletion of IFITMs partially rescues the IFN sensitivity of unadapted SHIV. Moreover, we found that the depletion of IFITMs also increased replication of unadapted SHIV in the absence of IFN treatment, suggesting that Ptm IFITMs are likely important host factors that limit replication of unadapted SHIVs. In conclusion, this study shows that Ptm IFITMs selectively restrict replication of unadapted SHIVs. These findings suggest that restriction factors including IFITMs vary in their potency against different SHIV variants and may play a role in selecting for viruses that adapt to species-specific restriction factors.
Assuntos
HIV-1/fisiologia , HIV-1/patogenicidade , Vírus da Imunodeficiência Símia/fisiologia , Vírus da Imunodeficiência Símia/patogenicidade , Produtos do Gene env do Vírus da Imunodeficiência Humana/fisiologia , Adaptação Fisiológica , Animais , Genes env , HIV-1/genética , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Especificidade de Hospedeiro , Humanos , Interferon-alfa/metabolismo , Macaca nemestrina/genética , Macaca nemestrina/imunologia , Macaca nemestrina/virologia , Processamento de Proteína Pós-Traducional , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Vírus Reordenados/fisiologia , Vírus da Imunodeficiência Símia/genética , Replicação ViralRESUMO
Antibodies that mediate killing of HIV-infected cells through antibody-dependent cellular cytotoxicity (ADCC) have been implicated in protection from HIV infection and disease progression. Despite these observations, these types of HIV antibodies are understudied compared to neutralizing antibodies. Here we describe four monoclonal antibodies (mAbs) obtained from one individual that target the HIV transmembrane protein, gp41, and mediate ADCC activity. These four mAbs arose from independent B cell lineages suggesting that in this individual, multiple B cell responses were induced by the gp41 antigen. Competition and phage peptide display mapping experiments suggested that two of the mAbs target epitopes in the cysteine loop that are highly conserved and a common target of HIV gp41-specific antibodies. The amino acid sequences that bind these mAbs are overlapping but distinct. The two other mAbs were competed by mAbs that target the C-terminal heptad repeat (CHR) and the fusion peptide proximal region (FPPR) and appear to both target a similar unique conformational epitope. These gp41-specific mAbs mediated killing of infected cells that express high levels of Env due to either pre-treatment with interferon or deletion of vpu to increase levels of BST-2/Tetherin. They also mediate killing of target cells coated with various forms of the gp41 protein, including full-length gp41, gp41 ectodomain or a mimetic of the gp41 stump. Unlike many ADCC mAbs that target HIV gp120, these gp41-mAbs are not dependent on Env structural changes associated with membrane-bound CD4 interaction. Overall, the characterization of these four new mAbs that target gp41 and mediate ADCC provides evidence for diverse gp41 B cell lineages with overlapping but distinct epitopes within an individual. Such antibodies that can target various forms of envelope protein could represent a common response to a relatively conserved HIV epitope for a vaccine.
Assuntos
Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/fisiologia , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/imunologia , Anticorpos Anti-HIV/fisiologia , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Testes de Neutralização/métodosRESUMO
No tool exists to stratify HIV risk in contemporary African female sex worker (FSW) populations. Data from a cohort of HIV-negative FSWs in Mombasa, Kenya from 2010 to 2017 were used to conduct a survival analysis assessing predictors of HIV infection. Stepwise regression was used to construct a multivariable model that formed the basis for the score. Seventeen HIV infections occurred over 1247 person-years of follow-up contributed by 670 women. Using depot medroxyprogesterone acetate (DMPA), having a curable sexually transmitted infection (STI), and being married contributed points to the score. HIV incidence was 0.85/100 person-years in a lower-risk group and 3.10/100 person-years in a higher-risk group. In a cohort with overall HIV incidence < 1.50/100 person-years, this risk score identified a subgroup of FSWs with HIV incidence > 3.00/100 person-years, which is the threshold used by the World Health Organization for initiating pre-exposure prophylaxis (PrEP). If validated in an external population, this tool could be useful for targeted PrEP promotion among higher-risk FSWs.
Assuntos
Infecções por HIV , Profilaxia Pré-Exposição , Profissionais do Sexo , Feminino , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Humanos , Incidência , Quênia/epidemiologia , Fatores de Risco , Trabalho SexualRESUMO
Mother-to-child transmission of human immunodeficiency virus (HIV) occurs in the setting of maternal and passively acquired antibodies, providing a unique window into immune correlates of HIV risk. We compared plasma antibody binding to HIV antigens between 51 nontransmitting mother-infant pairs and 21 transmitting mother-infant pairs. Plasma antibody binding to a variety of gp41 ectodomain-containing antigens was associated with increased odds of transmission. Understanding the reasons why gp41 ectodomain-targeting antibodies are associated with transmission risk will be important in determining whether they can directly enhance infection or whether their presence reflects a redirecting of the humoral response away from targeting more protective epitopes.
Assuntos
Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/transmissão , HIV-1/imunologia , Transmissão Vertical de Doenças Infecciosas , Aleitamento Materno/efeitos adversos , Estudos de Casos e Controles , Epitopos/imunologia , Feminino , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/imunologia , Infecções por HIV/virologia , Humanos , Lactente , Gravidez , Complicações Infecciosas na Gravidez/imunologiaRESUMO
BACKGROUND: Zika virus (ZIKV) was discovered over 70 years ago in East Africa, but little is known about its circulation and pathogenesis there. METHODS: We screened 327 plasma samples collected 2-12 months after febrile illness in Western and coastal Kenya (1993-2016) for binding and neutralizing antibodies to distinguish ZIKV and dengue virus (DENV) responses, which we found were common in coastal Kenya. RESULTS: Two cases had durable ZIKV-specific antibodies and 2 cases had ZIKV antibodies at similar levels as DENV antibodies. CONCLUSIONS: This suggests low-level ZIKV circulation in Kenya over 2 decades and sets a baseline for future surveillance efforts in East Africa.
Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vírus da Dengue/imunologia , Febre/sangue , Infecção por Zika virus/epidemiologia , Zika virus/imunologia , Coinfecção/sangue , Coinfecção/epidemiologia , Feminino , Humanos , Quênia/epidemiologia , Prevalência , Infecção por Zika virus/sangueRESUMO
Previous studies in our laboratory characterized a panel of highly mutated HIV-specific conformational epitope-targeting antibodies (Abs) from a panel of HIV-infected long-term nonprogressors (LTNPs). Despite binding HIV envelope protein and having a high number of somatic amino acid mutations, these Abs had poor neutralizing activity. Because of the evidence of antigen-driven selection and the long CDR3 region (21 amino acids [aa]), we further characterized the epitope targeting of monoclonal Ab (MAb) 76-Q3-2C6 (2C6). We confirmed that 2C6 binds preferentially to trimeric envelope and recognizes the clades A, B, and C SOSIP trimers. 2C6 binds gp140 constructs of clades A, B, C, and D, suggesting a conserved binding site that we localized to the ectodomain of gp41. Ab competition with MAb 50-69 suggested this epitope localizes near aa 579 to 613 (referenced to HXB2 gp160). Peptide library scanning showed consistent binding in this region but to only a single peptide. Lack of overlapping peptide binding supported a nonlinear epitope structure. The significance of this site is supported by 2C6 having Ab-dependent cell cytotoxicity (ADCC) against envelope proteins from two clades. Using 2C6 and variants, alanine scanning mutagenesis identified three amino acids (aa 592, 595, and 596) in the overlapping region of the previously identified peptide. Additional amino acids at sites 524 and 579 were also identified, helping explain its conformational requirement. The fact that different amino acids were included in the epitope depending on the targeted protein supports the conclusion that 2C6 targets a native conformational epitope. When we mapped these amino acids on the trimerized structure, they spanned across oligomers, supporting the notion that the epitope targeted by 2C6 lies in a recessed pocket between two gp41 oligomers. A complete understanding of the epitope specificity of ADCC-mediating Abs is essential for developing effective immunization strategies that optimize protection by these Abs.IMPORTANCE This paper further defines the function and area of the HIV trimeric envelope protein targeted by the monoclonal antibody 2C6. 2C6 binding is influenced by amino acid mutations across two separate gp41 sections of the envelope trimer. This epitope is recognized on multiple clades (variant groups of circulating viruses) of gp41, gp140 trimers, and SOSIP trimers. For the clades tested, 2C6 has robust ADCC. As the target of 2C6 is available in the major clades of HIV and has robust ADCC activity, further definition and appreciation of targeting of antibodies similar to 2C6 during vaccine development should be considered.
Assuntos
Anticorpos Monoclonais/farmacologia , Epitopos/imunologia , Proteína gp41 do Envelope de HIV/química , Infecções por HIV/imunologia , HIV-1/imunologia , Motivos de Aminoácidos , Anticorpos Neutralizantes/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Epitopos/química , Epitopos/genética , Células HEK293 , Anticorpos Anti-HIV/farmacologia , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Mutação , Conformação Proteica/efeitos dos fármacosRESUMO
Eliciting broadly neutralizing antibodies (bnAbs) targeting envelope (Env) is a major goal of HIV vaccine development, but cross-clade breadth from immunization has only sporadically been observed. Recently, Xu et al (2018) elicited cross-reactive neutralizing antibody responses in a variety of animal models using immunogens based on the epitope of bnAb VRC34.01. The VRC34.01 antibody, which was elicited by natural human infection, targets the N terminus of the Env fusion peptide, a critical component of the virus entry machinery. Here we precisely characterize the functional epitopes of VRC34.01 and two vaccine-elicited murine antibodies by mapping all single amino-acid mutations to the BG505 Env that affect viral neutralization. While escape from VRC34.01 occurred via mutations in both fusion peptide and distal interacting sites of the Env trimer, escape from the vaccine-elicited antibodies was mediated predominantly by mutations in the fusion peptide. Cryo-electron microscopy of four vaccine-elicited antibodies in complex with Env trimer revealed focused recognition of the fusion peptide and provided a structural basis for development of neutralization breadth. Together, these functional and structural data suggest that the breadth of vaccine-elicited antibodies targeting the fusion peptide can be enhanced by specific interactions with additional portions of Env. Thus, our complete maps of viral escape both delineate pathways of resistance to these fusion peptide-directed antibodies and provide a strategy to improve the breadth or potency of future vaccine-induced antibodies against Env's fusion peptide.