Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cochrane Database Syst Rev ; 10: CD011748, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33078867

RESUMO

BACKGROUND: Despite the availability of effective drug therapies that reduce low-density lipoprotein (LDL)-cholesterol (LDL-C), cardiovascular disease (CVD) remains an important cause of mortality and morbidity. Therefore, additional LDL-C reduction may be warranted, especially for people who are unresponsive to, or unable to take, existing LDL-C-reducing therapies. By inhibiting the proprotein convertase subtilisin/kexin type 9 (PCSK9) enzyme, monoclonal antibodies (PCSK9 inhibitors) reduce LDL-C and CVD risk. OBJECTIVES: Primary To quantify the effects of PCSK9 inhibitors on CVD, all-cause mortality, myocardial infarction, and stroke, compared to placebo or active treatment(s) for primary and secondary prevention. Secondary To quantify the safety of PCSK9 inhibitors, with specific focus on the incidence of influenza, hypertension, type 2 diabetes, and cancer, compared to placebo or active treatment(s) for primary and secondary prevention. SEARCH METHODS: We identified studies by systematically searching CENTRAL, MEDLINE, Embase, and Web of Science in December 2019. We also searched ClinicalTrials.gov and the International Clinical Trials Registry Platform in August 2020 and screened the reference lists of included studies. This is an update of the review first published in 2017. SELECTION CRITERIA: All parallel-group and factorial randomised controlled trials (RCTs) with a follow-up of at least 24 weeks were eligible. DATA COLLECTION AND ANALYSIS: Two review authors independently reviewed and extracted data. Where data were available, we calculated pooled effect estimates. We used GRADE to assess certainty of evidence and in 'Summary of findings' tables. MAIN RESULTS: We included 24 studies with data on 60,997 participants. Eighteen trials randomised participants to alirocumab and six to evolocumab. All participants received background lipid-lowering treatment or lifestyle counselling. Six alirocumab studies used  an active treatment comparison group (the remaining used placebo), compared to three evolocumab active comparison trials. Alirocumab compared with placebo decreased the risk of CVD events, with an absolute risk difference (RD) of -2% (odds ratio (OR) 0.87, 95% confidence interval (CI) 0.80 to 0.94; 10 studies, 23,868 participants; high-certainty evidence), decreased the risk of mortality (RD -1%; OR 0.83, 95% CI 0.72 to 0.96; 12 studies, 24,797 participants; high-certainty evidence), and MI (RD -2%; OR 0.86, 95% CI 0.79 to 0.94; 9 studies, 23,352 participants; high-certainty evidence) and for any stroke (RD 0%; OR 0.73, 95% CI 0.58 to 0.91; 8 studies, 22,835 participants; high-certainty evidence). Compared to active treatment the alirocumab effects, for CVD, the RD was 1% (OR 1.37, 95% CI 0.65 to 2.87; 3 studies, 1379 participants; low-certainty evidence); for mortality, RD was -1% (OR 0.51, 95% CI 0.18 to 1.40; 5 studies, 1333 participants; low-certainty evidence); for MI, RD was 1% (OR 1.45, 95% CI 0.64 to 3.28, 5 studies, 1734 participants; low-certainty evidence); and for any stroke, RD was less than 1% (OR 0.85, 95% CI 0.13 to 5.61; 5 studies, 1734 participants; low-certainty evidence). Compared to placebo the evolocumab, for CVD, the RD was -2% (OR 0.84, 95% CI 0.78 to 0.91; 3 studies, 29,432 participants; high-certainty evidence); for mortality, RD was less than 1% (OR 1.04, 95% CI 0.91 to 1.19; 3 studies, 29,432 participants; high-certainty evidence); for MI, RD was -1% (OR 0.72, 95% CI 0.64 to 0.82; 3 studies, 29,432 participants; high-certainty evidence); and for any stroke RD was less than -1% (OR 0.79, 95% CI 0.65 to 0.94; 2 studies, 28,531 participants; high-certainty evidence).  Compared to active treatment, the evolocumab effects, for any CVD event RD was less than -1% (OR 0.66, 95% CI 0.14 to 3.04; 1 study, 218 participants; very low-certainty evidence); for all-cause mortality, the RD was less than 1% (OR 0.43, 95% CI 0.14 to 1.30; 3 studies, 5223 participants; very low-certainty evidence); and for MI, RD was less than 1% (OR 0.66, 95% CI 0.23 to 1.85; 3 studies, 5003 participants; very low-certainty evidence). There were insufficient data on any stroke.  AUTHORS' CONCLUSIONS: The evidence for the clinical endpoint effects of  evolocumab and alirocumab were graded as high. There is a strong evidence base to prescribe PCSK9 monoclonal antibodies to people who might not be eligible for other lipid-lowering drugs, or to people who cannot meet their lipid goals on more traditional therapies, which was the main patient population of the available trials.  The evidence base of PCSK9 inhibitors compared with active treatment is much weaker (low very- to low-certainty evidence) and it is unclear whether evolocumab or alirocumab might be effectively used as replacement therapies. Related, most of the available studies preferentially enrolled people with either established CVD or at a high risk already, and evidence in low- to medium-risk settings is minimal. Finally, there is very limited evidence on any potential safety issues of both evolocumab and alirocumab. While the current evidence synthesis does not reveal any adverse signals, neither does it provide evidence against such signals. This suggests careful consideration of alternative lipid lowering treatments before prescribing PCSK9 inhibitors.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , LDL-Colesterol/sangue , Inibidores de PCSK9 , Anticolesterolemiantes/uso terapêutico , Causas de Morte , Antagonistas Colinérgicos/uso terapêutico , Ezetimiba/uso terapêutico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Pessoa de Meia-Idade , Infarto do Miocárdio/epidemiologia , Prevenção Primária/métodos , Pró-Proteína Convertase 9/imunologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Prevenção Secundária/métodos , Acidente Vascular Cerebral/epidemiologia , Fatores de Tempo
2.
Nucleic Acids Res ; 45(D1): D945-D954, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899562

RESUMO

ChEMBL is an open large-scale bioactivity database (https://www.ebi.ac.uk/chembl), previously described in the 2012 and 2014 Nucleic Acids Research Database Issues. Since then, alongside the continued extraction of data from the medicinal chemistry literature, new sources of bioactivity data have also been added to the database. These include: deposited data sets from neglected disease screening; crop protection data; drug metabolism and disposition data and bioactivity data from patents. A number of improvements and new features have also been incorporated. These include the annotation of assays and targets using ontologies, the inclusion of targets and indications for clinical candidates, addition of metabolic pathways for drugs and calculation of structural alerts. The ChEMBL data can be accessed via a web-interface, RDF distribution, data downloads and RESTful web-services.


Assuntos
Bases de Dados de Compostos Químicos , Bases de Dados de Ácidos Nucleicos , Ferramenta de Busca , Biologia Computacional/métodos , Proteção de Cultivos , Descoberta de Drogas , Ontologia Genética , Humanos , Anotação de Sequência Molecular , Farmacologia/métodos , Interface Usuário-Computador , Navegador
3.
PLoS Comput Biol ; 13(7): e1005641, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28678787

RESUMO

Testing potential drug treatments in animal disease models is a decisive step of all preclinical drug discovery programs. Yet, despite the importance of such experiments for translational medicine, there have been relatively few efforts to comprehensively and consistently analyze the data produced by in vivo bioassays. This is partly due to their complexity and lack of accepted reporting standards-publicly available animal screening data are only accessible in unstructured free-text format, which hinders computational analysis. In this study, we use text mining to extract information from the descriptions of over 100,000 drug screening-related assays in rats and mice. We retrieve our dataset from ChEMBL-an open-source literature-based database focused on preclinical drug discovery. We show that in vivo assay descriptions can be effectively mined for relevant information, including experimental factors that might influence the outcome and reproducibility of animal research: genetic strains, experimental treatments, and phenotypic readouts used in the experiments. We further systematize extracted information using unsupervised language model (Word2Vec), which learns semantic similarities between terms and phrases, allowing identification of related animal models and classification of entire assay descriptions. In addition, we show that random forest models trained on features generated by Word2Vec can predict the class of drugs tested in different in vivo assays with high accuracy. Finally, we combine information mined from text with curated annotations stored in ChEMBL to investigate the patterns of usage of different animal models across a range of experiments, drug classes, and disease areas.


Assuntos
Bioensaio/métodos , Bases de Dados Factuais , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Aprendizado de Máquina , Processamento de Linguagem Natural , Mineração de Dados/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Nucleic Acids Res ; 44(D1): D1220-8, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26582922

RESUMO

SureChEMBL is a publicly available large-scale resource containing compounds extracted from the full text, images and attachments of patent documents. The data are extracted from the patent literature according to an automated text and image-mining pipeline on a daily basis. SureChEMBL provides access to a previously unavailable, open and timely set of annotated compound-patent associations, complemented with sophisticated combined structure and keyword-based search capabilities against the compound repository and patent document corpus; given the wealth of knowledge hidden in patent documents, analysis of SureChEMBL data has immediate applications in drug discovery, medicinal chemistry and other commercial areas of chemical science. Currently, the database contains 17 million compounds extracted from 14 million patent documents. Access is available through a dedicated web-based interface and data downloads at: https://www.surechembl.org/.


Assuntos
Bases de Dados de Compostos Químicos , Patentes como Assunto , Mineração de Dados , Preparações Farmacêuticas/química
5.
Bioinformatics ; 32(1): 85-95, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26351271

RESUMO

MOTIVATION: Recent large-scale omics initiatives have catalogued the somatic alterations of cancer cell line panels along with their pharmacological response to hundreds of compounds. In this study, we have explored these data to advance computational approaches that enable more effective and targeted use of current and future anticancer therapeutics. RESULTS: We modelled the 50% growth inhibition bioassay end-point (GI50) of 17,142 compounds screened against 59 cancer cell lines from the NCI60 panel (941,831 data-points, matrix 93.08% complete) by integrating the chemical and biological (cell line) information. We determine that the protein, gene transcript and miRNA abundance provide the highest predictive signal when modelling the GI50 endpoint, which significantly outperformed the DNA copy-number variation or exome sequencing data (Tukey's Honestly Significant Difference, P <0.05). We demonstrate that, within the limits of the data, our approach exhibits the ability to both interpolate and extrapolate compound bioactivities to new cell lines and tissues and, although to a lesser extent, to dissimilar compounds. Moreover, our approach outperforms previous models generated on the GDSC dataset. Finally, we determine that in the cases investigated in more detail, the predicted drug-pathway associations and growth inhibition patterns are mostly consistent with the experimental data, which also suggests the possibility of identifying genomic markers of drug sensitivity for novel compounds on novel cell lines. CONTACT: terez@pasteur.fr; ab454@ac.cam.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Neoplasias/patologia , Bioensaio , Linhagem Celular Tumoral , Proliferação de Células , Bases de Dados de Proteínas , Humanos , Modelos Biológicos , Farmacogenética , Máquina de Vetores de Suporte
6.
J Chem Inf Model ; 57(12): 2976-2985, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29172488

RESUMO

Proteochemometric modeling (PCM) is a computational approach that can be considered an extension of quantitative structure-activity relationship (QSAR) modeling, where a single model incorporates information for a family of targets and all the associated ligands instead of modeling activity versus one target. This is especially useful for situations where bioactivity data exists for similar proteins but is scarce for the protein of interest. Here we demonstrate the application of PCM to identify allosteric modulators of metabotropic glutamate (mGlu) receptors. Given our long-running interest in modulating mGlu receptor function we compiled a matrix of compound-target bioactivity data. Some members of the mGlu family are well explored both internally and in the public domain, while there are much fewer examples of ligands for other targets such as the mGlu7 receptor. Using a PCM approach mGlu7 receptor hits were found. In comparison to conventional single target modeling the identified hits were more diverse, had a better confirmation rate, and provide starting points for further exploration. We conclude that the robust structure-activity relationship from well explored target family members translated to better quality hits for PCM compared to virtual screening (VS) based on a single target.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Descoberta de Drogas/métodos , Relação Quantitativa Estrutura-Atividade , Receptores de Glutamato Metabotrópico/metabolismo , Sequência de Aminoácidos , Animais , Simulação por Computador , Humanos , Ligantes , Camundongos , Modelos Biológicos , Simulação de Acoplamento Molecular , Ratos , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/química
7.
Cochrane Database Syst Rev ; 4: CD011748, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28453187

RESUMO

BACKGROUND: Despite the availability of effective drug therapies that reduce low-density lipoprotein (LDL)-cholesterol (LDL-C), cardiovascular disease (CVD) remains an important cause of mortality and morbidity. Therefore, additional LDL-C reduction may be warranted, especially for patients who are unresponsive to, or unable to take, existing LDL-C-reducing therapies. By inhibiting the proprotein convertase subtilisin/kexin type 9 (PCSK9) enzyme, monoclonal antibodies (PCSK9 inhibitors) may further reduce LDL-C, potentially reducing CVD risk as well. OBJECTIVES: Primary To quantify short-term (24 weeks), medium-term (one year), and long-term (five years) effects of PCSK9 inhibitors on lipid parameters and on the incidence of CVD. Secondary To quantify the safety of PCSK9 inhibitors, with specific focus on the incidence of type 2 diabetes, cognitive function, and cancer. Additionally, to determine if specific patient subgroups were more or less likely to benefit from the use of PCSK9 inhibitors. SEARCH METHODS: We identified studies by systematically searching the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and Web of Science. We also searched Clinicaltrials.gov and the International Clinical Trials Registry Platform and screened the reference lists of included studies. We identified the studies included in this review through electronic literature searches conducted up to May 2016, and added three large trials published in March 2017. SELECTION CRITERIA: All parallel-group and factorial randomised controlled trials (RCTs) with a follow-up time of at least 24 weeks were eligible. DATA COLLECTION AND ANALYSIS: Two review authors independently reviewed and extracted data. When data were available, we calculated pooled effect estimates. MAIN RESULTS: We included 20 studies with data on 67,237 participants (median age 61 years; range 52 to 64 years). Twelve trials randomised participants to alirocumab, three trials to bococizumab, one to RG7652, and four to evolocumab. Owing to the small number of trials using agents other than alirocumab, we did not differentiate between types of PCSK9 inhibitors used. We compared PCSK9 inhibitors with placebo (thirteen RCTs), ezetimibe (two RCTs) or ezetimibe and statins (five RCTs).Compared with placebo, PCSK9 inhibitors decreased LDL-C by 53.86% (95% confidence interval (CI) 58.64 to 49.08; eight studies; 4782 participants; GRADE: moderate) at 24 weeks; compared with ezetimibe, PCSK9 inhibitors decreased LDL-C by 30.20% (95% CI 34.18 to 26.23; two studies; 823 participants; GRADE: moderate), and compared with ezetimibe and statins, PCSK9 inhibitors decreased LDL-C by 39.20% (95% CI 56.15 to 22.26; five studies; 5376 participants; GRADE: moderate).Compared with placebo, PCSK9 inhibitors decreased the risk of CVD events, with a risk difference (RD) of 0.91% (odds ratio (OR) of 0.86, 95% CI 0.80 to 0.92; eight studies; 59,294 participants; GRADE: moderate). Compared with ezetimibe and statins, PCSK9 inhibitors appeared to have a stronger protective effect on CVD risk, although with considerable uncertainty (RD 1.06%, OR 0.45, 95% CI 0.27 to 0.75; three studies; 4770 participants; GRADE: very low). No data were available for the ezetimibe only comparison. Compared with placebo, PCSK9 probably had little or no effect on mortality (RD 0.03%, OR 1.02, 95% CI 0.91 to 1.14; 12 studies; 60,684 participants; GRADE: moderate). Compared with placebo, PCSK9 inhibitors increased the risk of any adverse events (RD 1.54%, OR 1.08, 95% CI 1.04 to 1.12; 13 studies; 54,204 participants; GRADE: low). Similar effects were observed for the comparison of ezetimibe and statins: RD 3.70%, OR 1.18, 95% CI 1.05 to 1.34; four studies; 5376 participants; GRADE: low. Clinical event data were unavailable for the ezetimibe only comparison. AUTHORS' CONCLUSIONS: Over short-term to medium-term follow-up, PCSK9 inhibitors reduced LDL-C. Studies with medium-term follow-up time (longest median follow-up recorded was 26 months) reported that PCSK9 inhibitors (compared with placebo) decreased CVD risk but may have increased the risk of any adverse events (driven by SPIRE-1 and -2 trials). Available evidence suggests that PCSK9 inhibitor use probably leads to little or no difference in mortality. Evidence on relative efficacy and safety when PCSK9 inhibitors were compared with active treatments was of low to very low quality (GRADE); follow-up times were short and events were few. Large trials with longer follow-up are needed to evaluate PCSK9 inhibitors versus active treatments as well as placebo. Owing to the predominant inclusion of high-risk patients in these studies, applicability of results to primary prevention is limited. Finally, estimated risk differences indicate that PCSK9 inhibitors only modestly change absolute risks (often to less than 1%).


Assuntos
Anticorpos Monoclonais/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , LDL-Colesterol/sangue , Inibidores de PCSK9 , Prevenção Primária/métodos , Prevenção Secundária/métodos , Anticorpos Monoclonais Humanizados/uso terapêutico , Causas de Morte , Antagonistas Colinérgicos/uso terapêutico , Ezetimiba/uso terapêutico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Tempo
8.
Nucleic Acids Res ; 43(W1): W612-20, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25883136

RESUMO

ChEMBL is now a well-established resource in the fields of drug discovery and medicinal chemistry research. The ChEMBL database curates and stores standardized bioactivity, molecule, target and drug data extracted from multiple sources, including the primary medicinal chemistry literature. Programmatic access to ChEMBL data has been improved by a recent update to the ChEMBL web services (version 2.0.x, https://www.ebi.ac.uk/chembl/api/data/docs), which exposes significantly more data from the underlying database and introduces new functionality. To complement the data-focused services, a utility service (version 1.0.x, https://www.ebi.ac.uk/chembl/api/utils/docs), which provides RESTful access to commonly used cheminformatics methods, has also been concurrently developed. The ChEMBL web services can be used together or independently to build applications and data processing workflows relevant to drug discovery and chemical biology.


Assuntos
Bases de Dados de Compostos Químicos , Descoberta de Drogas , Internet , Integração de Sistemas , Interface Usuário-Computador
9.
Bioinformatics ; 31(5): 776-8, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25348214

RESUMO

UNLABELLED: PPDMs is a resource that maps small molecule bioactivities to protein domains from the Pfam-A collection of protein families. Small molecule bioactivities mapped to protein domains add important precision to approaches that use protein sequence searches alignments to assist applications in computational drug discovery and systems and chemical biology. We have previously proposed a mapping heuristic for a subset of bioactivities stored in ChEMBL with the Pfam-A domain most likely to mediate small molecule binding. We have since refined this mapping using a manual procedure. Here, we present a resource that provides up-to-date mappings and the possibility to review assigned mappings as well as to participate in their assignment and curation. We also describe how mappings provided through the PPDMs resource are made accessible through the main schema of the ChEMBL database. AVAILABILITY AND IMPLEMENTATION: The PPDMs resource and curation interface is available at https://www.ebi.ac.uk/chembl/research/ppdms/pfam_maps. The source-code for PPDMs is available under the Apache license at https://github.com/chembl/pfam_maps. Source code is available at https://github.com/chembl/pfam_map_loader to demonstrate the integration process with the main schema of ChEMBL.


Assuntos
Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Descoberta de Drogas/métodos , Proteínas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Software , Humanos , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/química
10.
Bioinformatics ; 31(10): 1695-7, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25964657

RESUMO

MOTIVATION: ADME SARfari is a freely available web resource that enables comparative analyses of drug-disposition genes. It does so by integrating a number of publicly available data sources, which have subsequently been used to build data mining services, predictive tools and visualizations for drug metabolism researchers. The data include the interactions of small molecules with ADME (absorption, distribution, metabolism and excretion) proteins responsible for the metabolism and transport of molecules; available pharmacokinetic (PK) data; protein sequences of ADME-related molecular targets for pre-clinical model species and human; alignments of the orthologues including information on known SNPs (Single Nucleotide Polymorphism) and information on the tissue distribution of these proteins. In addition, in silico models have been developed, which enable users to predict which ADME relevant protein targets a novel compound is likely to interact with.


Assuntos
Farmacogenética , Farmacocinética , Software , Animais , Simulação por Computador , Cães , Genômica , Humanos , Internet , Polimorfismo de Nucleotídeo Único , Proteínas/química , Proteínas/metabolismo , Distribuição Tecidual
11.
Bioinformatics ; 31(9): 1505-7, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25505093

RESUMO

MOTIVATION: The field of toxicogenomics (the application of '-omics' technologies to risk assessment of compound toxicities) has expanded in the last decade, partly driven by new legislation, aimed at reducing animal testing in chemical risk assessment but mainly as a result of a paradigm change in toxicology towards the use and integration of genome wide data. Many research groups worldwide have generated large amounts of such toxicogenomics data. However, there is no centralized repository for archiving and making these data and associated tools for their analysis easily available. RESULTS: The Data Infrastructure for Chemical Safety Assessment (diXa) is a robust and sustainable infrastructure storing toxicogenomics data. A central data warehouse is connected to a portal with links to chemical information and molecular and phenotype data. diXa is publicly available through a user-friendly web interface. New data can be readily deposited into diXa using guidelines and templates available online. Analysis descriptions and tools for interrogating the data are available via the diXa portal. AVAILABILITY AND IMPLEMENTATION: http://www.dixa-fp7.eu CONTACT: d.hendrickx@maastrichtuniversity.nl; info@dixa-fp7.eu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Dados de Compostos Químicos , Toxicogenética , Animais , Perfilação da Expressão Gênica , Humanos , Metabolômica , Proteômica , Ratos
12.
J Chem Inf Model ; 56(9): 1654-75, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27482722

RESUMO

Drug discovery programs frequently target members of the human kinome and try to identify small molecule protein kinase inhibitors, primarily for cancer treatment, additional indications being increasingly investigated. One of the challenges is controlling the inhibitors degree of selectivity, assessed by in vitro profiling against panels of protein kinases. We manually extracted, compiled, and standardized such profiles published in the literature: we collected 356 908 data points corresponding to 482 protein kinases, 2106 inhibitors, and 661 patents. We then analyzed this data set in terms of kinome coverage, results reproducibility, popularity, and degree of selectivity of both kinases and inhibitors. We used the data set to create robust proteochemometric models capable of predicting kinase activity (the ligand-target space was modeled with an externally validated RMSE of 0.41 ± 0.02 log units and R02 0.74 ± 0.03), in order to account for missing or unreliable measurements. The influence on the prediction quality of parameters such as number of measurements, Murcko scaffold frequency or inhibitor type was assessed. Interpretation of the models enabled to highlight inhibitors and kinases properties correlated with higher affinities, and an analysis in the context of kinases crystal structures was performed. Overall, the models quality allows the accurate prediction of kinase-inhibitor activities and their structural interpretation, thus paving the way for the rational design of compounds with a targeted selectivity profile.


Assuntos
Desenho de Fármacos , Genômica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Modelos Moleculares , Conformação Proteica , Inibidores de Proteínas Quinases/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Reprodutibilidade dos Testes , Especificidade por Substrato
13.
Nucleic Acids Res ; 42(Database issue): D1083-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24214965

RESUMO

ChEMBL is an open large-scale bioactivity database (https://www.ebi.ac.uk/chembl), previously described in the 2012 Nucleic Acids Research Database Issue. Since then, a variety of new data sources and improvements in functionality have contributed to the growth and utility of the resource. In particular, more comprehensive tracking of compounds from research stages through clinical development to market is provided through the inclusion of data from United States Adopted Name applications; a new richer data model for representing drug targets has been developed; and a number of methods have been put in place to allow users to more easily identify reliable data. Finally, access to ChEMBL is now available via a new Resource Description Framework format, in addition to the web-based interface, data downloads and web services.


Assuntos
Bases de Dados de Compostos Químicos , Descoberta de Drogas , Sítios de Ligação , Humanos , Internet , Ligantes , Preparações Farmacêuticas/química , Proteínas/química , Proteínas/efeitos dos fármacos
14.
Biochim Biophys Acta ; 1844(11): 2002-2015, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25110827

RESUMO

More and more antibody therapeutics are being approved every year, mainly due to their high efficacy and antigen selectivity. However, it is still difficult to identify the antigen, and thereby the function, of an antibody if no other information is available. There are obstacles inherent to the antibody science in every project in antibody drug discovery. Recent experimental technologies allow for the rapid generation of large-scale data on antibody sequences, affinity, potency, structures, and biological functions; this should accelerate drug discovery research. Therefore, a robust bioinformatic infrastructure for these large data sets has become necessary. In this article, we first identify and discuss the typical obstacles faced during the antibody drug discovery process. We then summarize the current status of three sub-fields of antibody informatics as follows: (i) recent progress in technologies for antibody rational design using computational approaches to affinity and stability improvement, as well as ab-initio and homology-based antibody modeling; (ii) resources for antibody sequences, structures, and immune epitopes and open drug discovery resources for development of antibody drugs; and (iii) antibody numbering and IMGT. Here, we review "antibody informatics," which may integrate the above three fields so that bridging the gaps between industrial needs and academic solutions can be accelerated. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.

15.
Bioinformatics ; 30(6): 876-83, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24177719

RESUMO

MOTIVATION: Drug repositioning is the discovery of new indications for compounds that have already been approved and used in a clinical setting. Recently, some computational approaches have been suggested to unveil new opportunities in a systematic fashion, by taking into consideration gene expression signatures or chemical features for instance. We present here a novel method based on knowledge integration using semantic technologies, to capture the functional role of approved chemical compounds. RESULTS: In order to computationally generate repositioning hypotheses, we used the Web Ontology Language to formally define the semantics of over 20 000 terms with axioms to correctly denote various modes of action (MoA). Based on an integration of public data, we have automatically assigned over a thousand of approved drugs into these MoA categories. The resulting new resource is called the Functional Therapeutic Chemical Classification System and was further evaluated against the content of the traditional Anatomical Therapeutic Chemical Classification System. We illustrate how the new classification can be used to generate drug repurposing hypotheses, using Alzheimers disease as a use-case. AVAILABILITY: https://www.ebi.ac.uk/chembl/ftc; https://github.com/loopasam/ftc. CONTACT: croset@ebi.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Reposicionamento de Medicamentos/métodos , Doença de Alzheimer/tratamento farmacológico , Humanos , Internet , Preparações Farmacêuticas/classificação , Polifarmacologia
16.
Bioinformatics ; 30(2): 298-300, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24262214

RESUMO

UNLABELLED: myChEMBL is a completely open platform, which combines public domain bioactivity data with open source database and cheminformatics technologies. myChEMBL consists of a Linux (Ubuntu) Virtual Machine featuring a PostgreSQL schema with the latest version of the ChEMBL database, as well as the latest RDKit cheminformatics libraries. In addition, a self-contained web interface is available, which can be modified and improved according to user specifications. AVAILABILITY AND IMPLEMENTATION: The VM is available at: ftp://ftp.ebi.ac.uk/pub/databases/chembl/VM/myChEMBL/current. The web interface and web services code is available at: https://github.com/rochoa85/myChEMBL.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Compostos Químicos , Descoberta de Drogas/métodos , Software , Internet , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
17.
PLoS Comput Biol ; 10(4): e1003559, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699297

RESUMO

Allosteric modulators are ligands for proteins that exert their effects via a different binding site than the natural (orthosteric) ligand site and hence form a conceptually distinct class of ligands for a target of interest. Here, the physicochemical and structural features of a large set of allosteric and non-allosteric ligands from the ChEMBL database of bioactive molecules are analyzed. In general allosteric modulators are relatively smaller, more lipophilic and more rigid compounds, though large differences exist between different targets and target classes. Furthermore, there are differences in the distribution of targets that bind these allosteric modulators. Allosteric modulators are over-represented in membrane receptors, ligand-gated ion channels and nuclear receptor targets, but are underrepresented in enzymes (primarily proteases and kinases). Moreover, allosteric modulators tend to bind to their targets with a slightly lower potency (5.96 log units versus 6.66 log units, p<0.01). However, this lower absolute affinity is compensated by their lower molecular weight and more lipophilic nature, leading to similar binding efficiency and surface efficiency indices. Subsequently a series of classifier models are trained, initially target class independent models followed by finer-grained target (architecture/functional class) based models using the target hierarchy of the ChEMBL database. Applications of these insights include the selection of likely allosteric modulators from existing compound collections, the design of novel chemical libraries biased towards allosteric regulators and the selection of targets potentially likely to yield allosteric modulators on screening. All data sets used in the paper are available for download.


Assuntos
Modelos Químicos , Regulação Alostérica , Bases de Dados de Compostos Químicos , Ligantes , Peso Molecular
18.
J Comput Aided Mol Des ; 29(9): 885-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26201396

RESUMO

The emergence of a number of publicly available bioactivity databases, such as ChEMBL, PubChem BioAssay and BindingDB, has raised awareness about the topics of data curation, quality and integrity. Here we provide an overview and discussion of the current and future approaches to activity, assay and target data curation of the ChEMBL database. This curation process involves several manual and automated steps and aims to: (1) maximise data accessibility and comparability; (2) improve data integrity and flag outliers, ambiguities and potential errors; and (3) add further curated annotations and mappings thus increasing the usefulness and accuracy of the ChEMBL data for all users and modellers in particular. Issues related to activity, assay and target data curation and integrity along with their potential impact for users of the data are discussed, alongside robust selection and filter strategies in order to avoid or minimise these, depending on the desired application.


Assuntos
Bioensaio , Confiabilidade dos Dados , Bases de Dados de Compostos Químicos , Curadoria de Dados/normas , Bases de Dados de Compostos Químicos/normas , Bases de Dados Factuais , Concentração Inibidora 50
19.
Bioorg Med Chem ; 23(16): 5218-24, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25975639

RESUMO

The discovery of novel mechanism of action (MOA) antibacterials has been associated with the concept that antibacterial drugs occupy a differentiated region of physicochemical space compared to human-targeted drugs. With, in broad terms, antibacterials having higher molecular weight, lower logP and higher polar surface area (PSA). By analysing the physicochemical properties of about 1700 approved drugs listed in the ChEMBL database, we show, that antibacterials for whose targets are riboproteins (i.e., composed of a complex of RNA and protein) fall outside the conventional human 'drug-like' chemical space; whereas antibacterials that modulate bacterial protein targets, generally comply with the 'rule-of-five' guidelines for classical oral human drugs. Our analysis suggests a strong target-class association for antibacterials-either protein-targeted or riboprotein-targeted. There is much discussion in the literature on the failure of screening approaches to deliver novel antibacterial lead series, and linkage of this poor success rate for antibacterials with the chemical space properties of screening collections. Our analysis suggests that consideration of target-class may be an underappreciated factor in antibacterial lead discovery, and that in fact bacterial protein-targets may well have similar binding site characteristics to human protein targets, and questions the assumption that larger, more polar compounds are a key part of successful future antibacterial discovery.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Proteínas de Bactérias/metabolismo , Descoberta de Drogas , Animais , Bactérias/metabolismo , Infecções Bacterianas/metabolismo , Descoberta de Drogas/métodos , Humanos , Terapia de Alvo Molecular
20.
Nature ; 460(7253): 352-8, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19606141

RESUMO

Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.


Assuntos
Genoma Helmíntico/genética , Schistosoma mansoni/genética , Animais , Evolução Biológica , Éxons/genética , Genes de Helmintos/genética , Interações Hospedeiro-Parasita/genética , Íntrons/genética , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/embriologia , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa