Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Internet Res ; 22(11): e15347, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33211021

RESUMO

BACKGROUND: Social media is a rich, virtually untapped source of data on the dynamics of intimate partner violence, one that is both global in scale and intimate in detail. OBJECTIVE: The aim of this study is to use machine learning and other computational methods to analyze social media data for the reasons victims give for staying in or leaving abusive relationships. METHODS: Human annotation, part-of-speech tagging, and machine learning predictive models, including support vector machines, were used on a Twitter data set of 8767 #WhyIStayed and #WhyILeft tweets each. RESULTS: Our methods explored whether we can analyze micronarratives that include details about victims, abusers, and other stakeholders, the actions that constitute abuse, and how the stakeholders respond. CONCLUSIONS: Our findings are consistent across various machine learning methods, which correspond to observations in the clinical literature, and affirm the relevance of natural language processing and machine learning for exploring issues of societal importance in social media.


Assuntos
Uso da Internet/tendências , Violência por Parceiro Íntimo/psicologia , Aprendizado de Máquina/normas , Mídias Sociais/normas , Feminino , Humanos , Masculino , Processamento de Linguagem Natural
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa