RESUMO
The conservation of evolutionary history has been linked to increased benefits for humanity and can be captured by phylogenetic diversity (PD). The Evolutionarily Distinct and Globally Endangered (EDGE) metric has, since 2007, been used to prioritise threatened species for practical conservation that embody large amounts of evolutionary history. While there have been important research advances since 2007, they have not been adopted in practice because of a lack of consensus in the conservation community. Here, building from an interdisciplinary workshop to update the existing EDGE approach, we present an "EDGE2" protocol that draws on a decade of research and innovation to develop an improved, consistent methodology for prioritising species conservation efforts. Key advances include methods for dealing with uncertainty and accounting for the extinction risk of closely related species. We describe EDGE2 in terms of distinct components to facilitate future revisions to its constituent parts without needing to reconsider the whole. We illustrate EDGE2 by applying it to the world's mammals. As we approach a crossroads for global biodiversity policy, this Consensus View shows how collaboration between academic and applied conservation biologists can guide effective and practical priority-setting to conserve biodiversity.
Assuntos
Biodiversidade , Espécies em Perigo de Extinção , Animais , Filogenia , Evolução Biológica , Ciências Humanas , MamíferosRESUMO
Following the failure to fully achieve any of the 20 Aichi biodiversity targets, the future of biodiversity rests in the balance. The Convention on Biological Diversity's Kunming-Montreal Global Biodiversity Framework (GBF) presents the opportunity to preserve nature's contributions to people (NCPs) for current and future generations by conserving biodiversity and averting extinctions. There is a need to safeguard the tree of life-the unique and shared evolutionary history of life on Earth-to maintain the benefits it bestows into the future. Two indicators have been adopted within the GBF to monitor progress toward safeguarding the tree of life: the phylogenetic diversity (PD) indicator and the evolutionarily distinct and globally endangered (EDGE) index. We applied both to the world's mammals, birds, and cycads to show their utility at the global and national scale. The PD indicator can be used to monitor the overall conservation status of large parts of the evolutionary tree of life, a measure of biodiversity's capacity to maintain NCPs for future generations. The EDGE index is used to monitor the performance of efforts to conserve the most distinctive species. The risk to PD of birds, cycads, and mammals increased, and mammals exhibited the greatest relative increase in threatened PD over time. These trends appeared robust to the choice of extinction risk weighting. EDGE species had predominantly worsening extinction risk. A greater proportion of EDGE mammals (12%) had increased extinction risk compared with threatened mammals in general (7%). By strengthening commitments to safeguarding the tree of life, biodiversity loss can be reduced and thus nature's capacity to provide benefits to humanity now and in the future can be preserved.
Indicadores para monitorear el estado del árbol de la vida Resumen El futuro de la biodiversidad peligra tras no haberse logrado ninguno de los 20 Objetivos de Aichi. El Marco Global de Biodiversidad (GBF) de Kunming-Montreal del Convenio sobre la Diversidad Biológica (CDB) representa la oportunidad de preservar las contribuciones de la naturaleza a las personas (PNC) para las generaciones actuales y futuras mediante la conservación de la biodiversidad y la prevención de las extinciones. Es necesario salvaguardar el árbol de la vida -la historia evolutiva única y compartida de la vida en la Tierra- para mantener en el futuro los beneficios que aporta. En el GBF se han adoptado dos indicadores para supervisar los avances hacia el cuidado del árbol de la vida: el indicador de diversidad filogenética y el índice de especies evolutivamente distintas y globalmente amenazadas (EDGE). Aplicamos ambos a los mamíferos, las aves y las cícadas del mundo para demostrar su utilidad a escala mundial y nacional. El indicador de diversidad filogenética puede utilizarse para supervisar el estado de conservación general de grandes partes del árbol evolutivo de la vida, una medida de la capacidad de la biodiversidad para mantener los PNC para las generaciones futuras. El índice EDGE se utiliza para supervisar el rendimiento de los esfuerzos por conservar las especies más distintivas. El riesgo para la diversidad filogenética de aves, cícadas y mamíferos aumentó, y los mamíferos mostraron el mayor aumento relativo de la diversidad filogenética amenazada a lo largo del tiempo. Estas tendencias parecieron sólidas a la hora de elegir la valoración del riesgo de extinción. Las especies EDGE tuvieron un riesgo de extinción predominante cada vez peor. Una mayor proporción de mamíferos EDGE (12%) presentó un riesgo de extinción creciente en comparación con los mamíferos amenazados en general (7%). Si se refuerza el compromiso de salvaguardar el árbol de la vida, se puede reducir la pérdida de biodiversidad y preservar así la capacidad de la naturaleza para proporcionar beneficios a la humanidad ahora y en el futuro.
Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Humanos , Animais , Filogenia , Biodiversidade , MamíferosRESUMO
Human-driven extinction threatens entire lineages across the Tree of Life. Here we assess the conservation status of jawed vertebrate evolutionary history, using three policy-relevant approaches. First, we calculate an index of threat to overall evolutionary history, showing that we expect to lose 86-150 billion years (11-19%) of jawed vertebrate evolutionary history over the next 50-500 years. Second, we rank jawed vertebrate species by their EDGE scores to identify the highest priorities for species-focused conservation of evolutionary history, finding that chondrichthyans, ray-finned fish and testudines rank highest of all jawed vertebrates. Third, we assess the conservation status of jawed vertebrate families. We found that species within monotypic families are more likely to be threatened and more likely to be in decline than other species. We provide a baseline for the status of families at risk of extinction to catalyse conservation action. This work continues a trend of highlighting neglected groups-such as testudines, crocodylians, amphibians and chondrichthyans-as conservation priorities from a phylogenetic perspective.
Assuntos
Conservação dos Recursos Naturais , Tartarugas , Humanos , Animais , Filogenia , Vertebrados/genética , Evolução Biológica , Anfíbios , BiodiversidadeRESUMO
Phylogenetic diversity (PD)-the evolutionary history of a set of species-is conceptually linked to the maintenance of yet-to-be-discovered benefits from biodiversity or "option value." We used global phylogenetic and utilization data for birds to test the PD option value link, under the assumption that the performance of sets of PD-maximizing species at capturing known benefits is analogous to selecting the same species at a point in human history before these benefits were realized. PD performed better than random at capturing utilized bird species across 60% of tests, with performance linked to the phylogenetic dispersion and prevalence of each utilization category. Prioritizing threatened species for conservation by the PD they encapsulate performs comparably to prioritizing by their functional distinctiveness. However, species selected by each metric show low overlap, indicating that we should conserve both components of biodiversity to effectively conserve a variety of uses. Our findings provide empirical support for the link between evolutionary history and benefits for future generations.
Assuntos
Biodiversidade , Evolução Biológica , Humanos , Animais , Filogenia , Aves/genética , Espécies em Perigo de Extinção , FenbendazolRESUMO
Phylogenetic diversity measures are increasingly used in conservation planning to represent aspects of biodiversity beyond that captured by species richness. Here we develop two new metrics that combine phylogenetic diversity and the extent of human pressure across the spatial distribution of species - one metric valuing regions and another prioritising species. We evaluate these metrics for reptiles, which have been largely neglected in previous studies, and contrast these results with equivalent calculations for all terrestrial vertebrate groups. We find that regions under high human pressure coincide with the most irreplaceable areas of reptilian diversity, and more than expected by chance. The highest priority reptile species score far above the top mammal and bird species, and reptiles include a disproportionate number of species with insufficient extinction risk data. Data Deficient species are, in terms of our species-level metric, comparable to Critically Endangered species and therefore may require urgent conservation attention.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Filogenia , Répteis , Distribuição Animal , Animais , Espécies em Perigo de Extinção , Extinção Biológica , Humanos , Répteis/classificação , Risco , Especificidade da Espécie , VertebradosRESUMO
The scale of the ongoing biodiversity crisis requires both effective conservation prioritisation and urgent action. As extinction is non-random across the tree of life, it is important to prioritise threatened species which represent large amounts of evolutionary history. The EDGE metric prioritises species based on their Evolutionary Distinctiveness (ED), which measures the relative contribution of a species to the total evolutionary history of their taxonomic group, and Global Endangerment (GE), or extinction risk. EDGE prioritisations rely on adequate phylogenetic and extinction risk data to generate meaningful priorities for conservation. However, comprehensive phylogenetic trees of large taxonomic groups are extremely rare and, even when available, become quickly out-of-date due to the rapid rate of species descriptions and taxonomic revisions. Thus, it is important that conservationists can use the available data to incorporate evolutionary history into conservation prioritisation. We compared published and new methods to estimate missing ED scores for species absent from a phylogenetic tree whilst simultaneously correcting the ED scores of their close taxonomic relatives. We found that following artificial removal of species from a phylogenetic tree, the new method provided the closest estimates of their "true" ED score, differing from the true ED score by an average of less than 1%, compared to the 31% and 38% difference of the previous methods. The previous methods also substantially under- and over-estimated scores as more species were artificially removed from a phylogenetic tree. We therefore used the new method to estimate ED scores for all tetrapods. From these scores we updated EDGE prioritisation rankings for all tetrapod species with IUCN Red List assessments, including the first EDGE prioritisation for reptiles. Further, we identified criteria to identify robust priority species in an effort to further inform conservation action whilst limiting uncertainty and anticipating future phylogenetic advances.