Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(12): e2308478121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489389

RESUMO

The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump-probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.


Assuntos
Compostos Férricos , Prochlorococcus , Compostos Férricos/química , Proteínas de Ligação ao Ferro/metabolismo , Prochlorococcus/metabolismo , Ferro/metabolismo , Oxirredução , Transferrina/metabolismo , Água/química , Compostos Ferrosos/química , Cristalografia por Raios X
2.
Genome ; 66(11): 295-304, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307601

RESUMO

Half-chromatid mutations occur when a single base change in a gamete is transmitted to the zygote, which, after DNA replication and cleavage, will result in a mosaic individual. These mutations will be passed on through the germ plasm and also may be expressed somatically. Half-chromatid mutation has been suggested to account for the observed lower frequency of males than expected for lethal X-linked recessive disorders in humans, such as Lesch-Nyhan syndrome, incontinentia pigmenti, and Duchene muscular dystrophy. Although attention has been paid to half-chromatid mutation in humans, it otherwise has been ignored. Here I show that half-chromatid mutation in haplodiploid organisms, such as Hymenoptera, has some interesting and important consequences: (i) since all genes follow the X-linked pattern of inheritance, half-chromatid mutations should be relatively easier to detect; (ii) recessive mutations of all viabilities may be expected; (iii) mosaics of both sexes are expected in haplodiploids with half-chromatid mutation; (iv) gynandromorphs could result from half-chromatid mutation at the sex-determination locus, in species with single-locus complementary sex-determination. Finally, half-chromatid mutation can account for the rare fertile male tortoiseshell phenotype observed in the domestic cat, Felis catus, and which still has not been fully accounted for by other mechanisms.


Assuntos
Cromátides , Himenópteros , Gatos , Masculino , Humanos , Animais , Feminino , Himenópteros/genética , Mutação , Fertilidade
3.
Phys Chem Chem Phys ; 24(46): 28444-28456, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36399064

RESUMO

X-ray characterisation methods have undoubtedly enabled cutting-edge advances in all aspects of materials research. Despite the enormous breadth of information that can be extracted from these techniques, the challenge of radiation-induced sample change and damage remains prevalent. This is largely due to the emergence of modern, high-intensity X-ray source technologies and the growing potential to carry out more complex, longer duration in situ or in operando studies. The tunability of synchrotron beamlines enables the routine application of photon energy-dependent experiments. This work explores the structural stability of [Rh(COD)Cl]2, a widely used catalyst and precursor in the chemical industry, across a range of beamline parameters that target X-ray energies of 8 keV, 15 keV, 18 keV and 25 keV, on a powder X-ray diffraction synchrotron beamline at room temperature. Structural changes are discussed with respect to absorbed X-ray dose at each experimental setting associated with the respective photon energy. In addition, the X-ray radiation hardness of the catalyst is discussed, by utilising the diffraction data collected at the different energies to determine a dose limit, which is often considered in protein crystallography and typically overlooked in small molecule crystallography. This work not only gives fundamental insight into how damage manifests in this organometallic catalyst, but will encourage careful consideration of experimental X-ray parameters before conducting diffraction on similar radiation-sensitive organometallic materials.


Assuntos
Fótons , Síncrotrons , Raios X , Cristalografia , Difração de Raios X
4.
J Biol Inorg Chem ; 26(7): 743-761, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34477969

RESUMO

Structure determination of proteins and enzymes by X-ray crystallography remains the most widely used approach to complement functional and mechanistic studies. Capturing the structures of intact redox states in metalloenzymes is critical for assigning the chemistry carried out by the metal in the catalytic cycle. Unfortunately, X-rays interact with protein crystals to generate solvated photoelectrons that can reduce redox active metals and hence change the coordination geometry and the coupled protein structure. Approaches to mitigate such site-specific radiation damage continue to be developed, but nevertheless application of such approaches to metalloenzymes in combination with mechanistic studies are often overlooked. In this review, we summarize our recent structural and kinetic studies on a set of three heme peroxidases found in the bacterium Streptomyces lividans that each belong to the dye decolourizing peroxidase (DyP) superfamily. Kinetically, each of these DyPs has a distinct reactivity with hydrogen peroxide. Through a combination of low dose synchrotron X-ray crystallography and zero dose serial femtosecond X-ray crystallography using an X-ray free electron laser (XFEL), high-resolution structures with unambiguous redox state assignment of the ferric and ferryl (FeIV = O) heme species have been obtained. Experiments using stopped-flow kinetics, solvent-isotope exchange and site-directed mutagenesis with this set of redox state validated DyP structures have provided the first comprehensive kinetic and structural framework for how DyPs can modulate their distal heme pocket Asp/Arg dyad to use either the Asp or the Arg to facilitate proton transfer and rate enhancement of peroxide heterolysis.


Assuntos
Ácido Aspártico , Peroxidases , Arginina/metabolismo , Cristalografia por Raios X , Cinética , Oxirredução , Peroxidases/metabolismo , Raios X
5.
Proc Natl Acad Sci U S A ; 115(1): E72-E81, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29247053

RESUMO

Protein-protein interactions are essential for the control of cellular functions and are critical for regulation of the immune system. One example is the binding of Fc regions of IgG to the Fc gamma receptors (FcγRs). High sequence identity (98%) between the genes encoding FcγRIIIa (expressed on macrophages and natural killer cells) and FcγRIIIb (expressed on neutrophils) has prevented the development of monospecific agents against these therapeutic targets. We now report the identification of FcγRIIIa-specific artificial binding proteins called "Affimer" that block IgG binding and abrogate FcγRIIIa-mediated downstream effector functions in macrophages, namely TNF release and phagocytosis. Cocrystal structures and molecular dynamics simulations have revealed the structural basis of this specificity for two Affimer proteins: One binds directly to the Fc binding site, whereas the other acts allosterically.


Assuntos
Complexo Antígeno-Anticorpo/química , Imunoglobulina G/química , Simulação de Dinâmica Molecular , Receptores de IgG/química , Regulação Alostérica , Complexo Antígeno-Anticorpo/imunologia , Humanos , Imunoglobulina G/imunologia , Receptores de IgG/imunologia
6.
J Synchrotron Radiat ; 27(Pt 2): 360-370, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153274

RESUMO

Serial synchrotron crystallography (SSX) is an emerging technique for static and time-resolved protein structure determination. Using specifically patterned silicon chips for sample delivery, the `hit-and-return' (HARE) protocol allows for efficient time-resolved data collection. The specific pattern of the crystal wells in the HARE chip provides direct access to many discrete time points. HARE chips allow for optical excitation as well as on-chip mixing for reaction initiation, making a large number of protein systems amenable to time-resolved studies. Loading of protein microcrystals onto the HARE chip is streamlined by a novel vacuum loading platform that allows fine-tuning of suction strength while maintaining a humid environment to prevent crystal dehydration. To enable the widespread use of time-resolved serial synchrotron crystallography (TR-SSX), detailed technical descriptions of a set of accessories that facilitate TR-SSX workflows are provided.

7.
Angew Chem Int Ed Engl ; 59(48): 21656-21662, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32780931

RESUMO

Obtaining structures of intact redox states of metal centers derived from zero dose X-ray crystallography can advance our mechanistic understanding of metalloenzymes. In dye-decolorising heme peroxidases (DyPs), controversy exists regarding the mechanistic role of the distal heme residues aspartate and arginine in the heterolysis of peroxide to form the catalytic intermediate compound I (FeIV =O and a porphyrin cation radical). Using serial femtosecond X-ray crystallography (SFX), we have determined the pristine structures of the FeIII and FeIV =O redox states of a B-type DyP. These structures reveal a water-free distal heme site that, together with the presence of an asparagine, imply the use of the distal arginine as a catalytic base. A combination of mutagenesis and kinetic studies corroborate such a role. Our SFX approach thus provides unique insight into how the distal heme site of DyPs can be tuned to select aspartate or arginine for the rate enhancement of peroxide heterolysis.


Assuntos
Arginina/metabolismo , Corantes/metabolismo , Heme/metabolismo , Compostos de Ferro/metabolismo , Oxigênio/metabolismo , Peroxidase/metabolismo , Arginina/química , Biocatálise , Corantes/química , Cristalografia por Raios X , Heme/química , Compostos de Ferro/química , Modelos Moleculares , Oxirredução , Oxigênio/química , Peroxidase/química , Streptomyces lividans/enzimologia
8.
J Synchrotron Radiat ; 26(Pt 4): 991-997, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274420

RESUMO

Temperature control is a key aspect of macromolecular crystallography, with the technique of cryocooling routinely being used to mitigate X-ray-induced damage. Beam-induced heating could cause the temperature of crystals to rise above the glass transition temperature, greatly increasing the rate of damage. X-ray-induced heating of ruby crystals of 20-40 µm in size has been quantified non-invasively by monitoring the emission wavelengths of X-ray-induced fluorescence during exposure to the X-ray beam. For the beam sizes and dose rates typically used in macromolecular crystallography, the temperature rises are of the order of 20 K. The temperature changes observed are compared with models in the literature and can be used as a validation tool for future models.


Assuntos
Cristalografia por Raios X/métodos , Calefação , Raios X , Cristalização
9.
J Synchrotron Radiat ; 26(Pt 1): 45-51, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30655467

RESUMO

The tangential curvature of actively bent X-ray mirrors at synchrotron radiation and X-ray free-electron laser (XFEL) facilities is typically only changed every few hours or even days. This operation can take tens of minutes for active optics with multiple bending actuators and often requires expert guidance using in situ monitoring devices. Hence, the dynamic performance of active X-ray optics for synchrotron beamlines has historically not been exploited. This is in stark contrast to many other scientific fields. However, many areas of synchrotron radiation and XFEL science, including macromolecular crystallography, could greatly benefit from the ability to change the size and shape of the X-ray beam rapidly and continuously. The advantages of this innovative approach are twofold: a large reduction in the dead time required to change the size of the X-ray beam for different-sized samples and the possibility of making multiple changes to the beam during the measurement of a single sample. In the preceding paper [Part I; Alcock, Nistea, Signorato & Sawhney (2019), J. Synchrotron Rad. 26, 36-44], which accompanies this article, high-speed visible-light Fizeau interferometry was used to identify the factors which influence the dynamic bending behaviour of piezoelectric bimorph deformable X-ray mirrors. Building upon this ex situ metrology study, provided here is the first synchrotron radiation beamline implementation of high-speed adaptive X-ray optics using two bimorphs operating as a Kirkpatrick-Baez pair. With optimized substrates, novel opto-mechanical holders and a next-generation high-voltage power supply, the size of an X-ray beam was rapidly and repeatedly switched in <10 s. Of equal importance, it is also shown that compensation of piezoelectric creep ensures that the X-ray beam size remains stable for more than 1 h after making a major change. The era of high-speed adaptive X-ray optics for synchrotron radiation and XFEL beamlines has begun.

10.
J Synchrotron Radiat ; 26(Pt 5): 1820-1825, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490175

RESUMO

Efficient sample delivery is an essential aspect of serial crystallography at both synchrotrons and X-ray free-electron lasers. Rastering fixed target chips through the X-ray beam is an efficient method for serial delivery from the perspectives of both sample consumption and beam time usage. Here, an approach for loading fixed targets using acoustic drop ejection is presented that does not compromise crystal quality, can reduce sample consumption by more than an order of magnitude and allows serial diffraction to be collected from a larger proportion of the crystals in the slurry.

11.
J Synchrotron Radiat ; 25(Pt 2): 627-628, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488946

RESUMO

Corrections to an equation and a figure in the paper by Paithankar et al. (2009). [J. Synchrotron Rad. 16, 152-162] are made.

12.
Nat Methods ; 11(11): 1131-4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25282611

RESUMO

We describe a method for performing time-resolved X-ray crystallographic experiments based on the Hadamard transform, in which time resolution is defined by the underlying periodicity of the probe pulse sequence, and signal/noise is greatly improved over that for the fastest pump-probe experiments depending on a single pulse. This approach should be applicable on standard synchrotron beamlines and will enable high-resolution measurements of protein and small-molecule structural dynamics. It is also applicable to other time-resolved measurements where a probe can be encoded, such as pump-probe spectroscopy.


Assuntos
Cristalografia por Raios X/métodos , Proteínas de Plantas/química , Conformação Proteica , Razão Sinal-Ruído , Fatores de Tempo
13.
J Synchrotron Radiat ; 23(1): 228-37, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698068

RESUMO

Fringes and speckles occur within diffraction spots when a crystal is illuminated with coherent radiation during X-ray diffraction. The additional information in these features provides insight into the imperfections in the crystal at the sub-micrometre scale. In addition, these features can provide more accurate intensity measurements (e.g. by model-based profile fitting), detwinning (by distinguishing the various components), phasing (by exploiting sampling of the molecular transform) and refinement (by distinguishing regions with different unit-cell parameters). In order to exploit these potential benefits, the features due to coherent diffraction have to be recorded and any change due to radiation damage properly modelled. Initial results from recording coherent diffraction at cryotemperatures from polyhedrin crystals of approximately 2 µm in size are described. These measurements allowed information about the type of crystal imperfections to be obtained at the sub-micrometre level, together with the changes due to radiation damage.


Assuntos
Proteínas/efeitos da radiação , Cristalografia por Raios X , Proteínas/química
14.
Arch Biochem Biophys ; 602: 21-31, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27046341

RESUMO

Following pioneering work 40 years ago, synchrotron beamlines dedicated to macromolecular crystallography (MX) have improved in almost every aspect as instrumentation has evolved. Beam sizes and crystal dimensions are now on the single micron scale while data can be collected from proteins with molecular weights over 10 MDa and from crystals with unit cell dimensions over 1000 Å. Furthermore it is possible to collect a complete data set in seconds, and obtain the resulting structure in minutes. The impact of MX synchrotron beamlines and their evolution is reflected in their scientific output, and MX is now the method of choice for a variety of aims from ligand binding to structure determination of membrane proteins, viruses and ribosomes, resulting in a much deeper understanding of the machinery of life. A main driving force of beamline evolution have been advances in almost every aspect of the instrumentation comprising a synchrotron beamline. In this review we aim to provide an overview of the current status of instrumentation at modern MX experiments. The most critical optical components are discussed, as are aspects of endstation design, sample delivery, visualisation and positioning, the sample environment, beam shaping, detectors and data acquisition and processing.


Assuntos
Cristalização/instrumentação , Cristalografia/instrumentação , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Síncrotrons/instrumentação , Cristalização/tendências , Cristalografia/tendências , Desenho de Equipamento , Análise de Falha de Equipamento
15.
Adv Exp Med Biol ; 922: 105-117, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27553238

RESUMO

A reproducible, and sample independent means of predictably obtaining large, well-ordered crystals has proven elusive in macromolecular crystallography. In the structure determination pipeline, crystallisation often proves to be a rate-limiting step, and the process of obtaining even small or badly ordered crystals can prove time-consuming and laborious. This is particularly true in the field of membrane protein crystallography and this is reflected in the limited number of unique membrane protein structures deposited in the protein data bank (less than 650 by June 2016 - http://blanco.biomol.uci.edu/mpstruc ). Over recent years the requirement for, and time and cost associated with obtaining, large crystals has been partially alleviated through the development of beamline instrumentation allowing data collection, and structure solution, from ever-smaller crystals. Advances in several areas have led to a step change in what might be considered achievable during a synchrotron trip over the last decade. This chapter will briefly review the current status of the field, the tools available to ease data collection and processing, and give some examples of exploitation of these for membrane protein microfocus macromolecular crystallography.


Assuntos
Cristalografia por Raios X/métodos , Proteínas de Membrana/química , Síncrotrons/instrumentação , Microtomografia por Raio-X/métodos , Transportadores de Cassetes de Ligação de ATP/química , Proteínas da Membrana Bacteriana Externa/química , Cristalização , Cristalografia por Raios X/instrumentação , Coleta de Dados , Bases de Dados de Proteínas , Diacilglicerol Quinase/química , Proteínas de Escherichia coli/química , Humanos , Lipopolissacarídeos/química , Microscopia de Interferência/métodos , Modelos Moleculares , Receptores de Hormônio Liberador da Corticotropina/química , Microtomografia por Raio-X/instrumentação , Raios X
16.
J Struct Biol ; 192(1): 88-99, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26291392

RESUMO

Polyhedra represent an ancient system used by a number of insect viruses to protect virions during long periods of environmental exposure. We present high resolution crystal structures of polyhedra for seven previously uncharacterised types of cypoviruses, four using ab initio selenomethionine phasing (two of these required over 100 selenomethionine crystals each). Approximately 80% of residues are structurally equivalent between all polyhedrins (pairwise rmsd ⩽ 1.5 Å), whilst pairwise sequence identities, based on structural alignment, are as little as 12%. These structures illustrate the effect of 400 million years of evolution on a system where the crystal lattice is the functionally conserved feature in the face of massive sequence variability. The conservation of crystal contacts is maintained across most of the molecular surface, except for a dispensable virus recognition domain. By spreading the contacts over so much of the protein surface the lattice remains robust in the face of many individual changes. Overall these unusual structural constraints seem to have skewed the molecule's evolution so that surface residues are almost as conserved as the internal residues.


Assuntos
Vírus de Insetos/ultraestrutura , Proteínas Estruturais Virais/química , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Citidina Trifosfato/química , Evolução Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Estruturais Virais/ultraestrutura
17.
J Synchrotron Radiat ; 22(6): 1372-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26524301

RESUMO

The design and implementation of a compact and portable sample alignment system suitable for use at both synchrotron and free-electron laser (FEL) sources and its performance are described. The system provides the ability to quickly and reliably deliver large numbers of samples using the minimum amount of sample possible, through positioning of fixed target arrays into the X-ray beam. The combination of high-precision stages, high-quality sample viewing, a fast controller and a software layer overcome many of the challenges associated with sample alignment. A straightforward interface that minimizes setup and sample changeover time as well as simplifying communication with the stages during the experiment is also described, together with an intuitive naming convention for defining, tracking and locating sample positions. The setup allows the precise delivery of samples in predefined locations to a specific position in space and time, reliably and simply.

18.
Biochemistry ; 53(11): 1870-7, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24601529

RESUMO

Bacterial aryl sulfotransferases (ASSTs) catalyze sulfotransfer from a phenolic sulfate to a phenol. These enzymes are frequently found in pathogens and upregulated during infection. Their mechanistic understanding is very limited, and their natural substrates are unknown. Here, the crystal structures of Escherichia coli CFT073 ASST trapped in its presulfurylation state with model donor substrates bound in the active site are reported, which reveal the molecular interactions governing substrate recognition. Furthermore, spectroscopic titrations with donor substrates and sulfurylation kinetics of ASST illustrate that this enzyme binds substrates in a 1:1 stoichiometry and that the active sites of the ASST homooligomer act independently. Mass spectrometry and crystallographic experiments of ASST incubated with human urine demonstrate that urine contains a sulfuryl donor substrate. In addition, we examined the capability of the two paralogous dithiol oxidases present in uropathogenic E. coli CFT073, DsbA, and the ASST-specific enzyme DsbL, to introduce the single, conserved disulfide bond into ASST. We show that DsbA and DsbL introduce the disulfide bond into unfolded ASST at similar rates. Hence, a chaperone effect of DsbL, not present in DsbA, appears to be responsible for the dependence of efficient ASST folding on DsbL in vivo. The conservation of paralogous dithiol oxidases with different substrate specificities in certain bacterial strains may therefore be a consequence of the complex folding pathways of their substrate proteins.


Assuntos
Arilsulfotransferase/química , Proteínas de Escherichia coli/química , Oxirredutases/química , Isomerases de Dissulfetos de Proteínas/química , Sequência de Aminoácidos , Arilsulfotransferase/fisiologia , Catálise , Cristalografia por Raios X , Dissulfetos/química , Proteínas de Escherichia coli/fisiologia , Humanos , Dados de Sequência Molecular , Oxirredutases/fisiologia , Isomerases de Dissulfetos de Proteínas/fisiologia , Dobramento de Proteína , Especificidade por Substrato , Difração de Raios X/métodos
19.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1248-56, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24816094

RESUMO

A departure from a linear or an exponential intensity decay in the diffracting power of protein crystals as a function of absorbed dose is reported. The observation of a lag phase raises the possibility of collecting significantly more data from crystals held at room temperature before an intolerable intensity decay is reached. A simple model accounting for the form of the intensity decay is reintroduced and is applied for the first time to high frame-rate room-temperature data collection.


Assuntos
Cristalografia por Raios X/métodos , Cristalografia por Raios X/instrumentação , Enterovirus Bovino/química , Vírus da Febre Aftosa/química , Modelos Teóricos , Proteínas/química , Temperatura
20.
J Am Chem Soc ; 136(1): 137-46, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24328211

RESUMO

Cellular retinaldehyde-binding protein (CRALBP) chaperones 11-cis-retinal to convert opsin receptor molecules into photosensitive retinoid pigments of the eye. We report a thermal secondary isomerase activity of CRALBP when bound to 9-cis-retinal. UV/vis and (1)H NMR spectroscopy were used to characterize the product as 9,13-dicis-retinal. The X-ray structure of the CRALBP mutant R234W:9-cis-retinal complex at 1.9 Å resolution revealed a niche in the binding pocket for 9-cis-aldehyde different from that reported for 11-cis-retinal. Combined computational, kinetic, and structural data lead us to propose an isomerization mechanism catalyzed by a network of buried waters. Our findings highlight a specific role of water molecules in both CRALBP-assisted specificity toward 9-cis-retinal and its thermal isomerase activity yielding 9,13-dicis-retinal. Kinetic data from two point mutants of CRALBP support an essential role of Glu202 as the initial proton donor in this isomerization reaction.


Assuntos
Proteínas de Transporte/metabolismo , Isomerases/química , Isomerases/metabolismo , Retinaldeído/química , Proteínas de Transporte/química , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Diterpenos , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Teoria Quântica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa