RESUMO
Chromium (Cr) is used in many manufacturing processes, and its release into natural waters is a major environmental problem today. Low concentrations of Cr(VI) are toxic to human health and living organisms due to the carcinogenic and mutagenic nature of this mineral. This work examined the conversion of Cr(VI) to Cr(III) via electrochemical reduction using gold electrode in an acidic sodium alginate (SA) solution and subsequent removal of the produced Cr(III)-SA by the polymer-enhanced ultrafiltration (PEUF) technique. A solution of SA in nitric acid was used both as an electrolytic medium during the voltammetric measurements and bulk electrolysis and as an extracting agent during the PEUF technique. The electroanalysis of Cr(VI) was performed by linear sweep voltammetry in the presence of acidic SA solution to study its voltammetric behavior as a function of the Cr(VI) concentration, pH, presence of Cr(III), SA concentration and scan rate. In addition, the quantitative reduction of Cr(VI) to Cr(III) was studied through the bulk electrolysis technique. The results showed efficient reduction with well-defined peaks at approximately 0.3 V vs. Ag/AgCl, using a gold working electrode. As the pH increased, the reduction signal strongly decreased until its disappearance. The optimum SA concentration was 10 mmol/L, and it was observed that the presence of Cr(III) did not interfere in the Cr(VI) electroanalysis. Through the quantitative reduction by bulk electrolysis in the presence of acidic SA solution, it was possible to reduce all Cr(VI) to Cr(III) followed by its removal via PEUF.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Alginatos , Cromo , Humanos , Concentração de Íons de Hidrogênio , OxirreduçãoRESUMO
Recent progress in the field of photosensitive materials has prompted a need to develop efficient methods to synthesize materials with basic intermolecular architectural designs and novel properties. Accordingly, in this work we design and study a photoactive polymer as a photo-switchable polymeric system in the presence and absence of ZnS nanoparticles (average size < 10 nm) at 5 wt.%. The influence of UV light irradiation on its properties were also studied. The photoactive block copolymer was obtained from styrene (S) and methyl methacrylate (MMA) as monomers and 1-(2-hydroxyethyl)-3,3-dimethylindoline-6-nitrobenzopyran (SP) was grafted to the block copolymer backbone as a photochromic agent. Furthermore, the incorporation of ZnS (NPs) as photo-optical switch component into the system enhances the purple colored photo-emission, with the open form of the spiropyran derivative (merocyanine, MC). The ZnS stabilize the isomeric equilibrium in the MC interconversion of the photochromic agent. The photo-switchable properties of the PS-b-PMMA-SP in the presence of ZnS (NPs) were examined using UV-VIS spectroscopy, Photoluminescence (PL) spectroscopy, optical fluorescence and scanning electronic microscopy (SEM-EDX.). The observed changes in the absorbance, fluorescence and morphology of the system were associated to the reversible interconversion of the two states of the photochromic agent which regulates the radiative deactivation of the luminescent ZnS NPs component. After UV irradiation the photoactive polymer becomes purple in color. Therefore, these basic studies can lead to the development of innovative functional and nanostructured materials with photosensitive character as photosensitive molecular switches.
RESUMO
This work describes the use of the breath figure (BF) method for the fabrication of photoactive porous polymer films and the characterization of their responsive to photo stimulus. The films incorporate self-assembled photoactive polymers and ZnS nanoparticles (NPs). The effect of both components on the optical and morphological properties of the films were analyzed. Films with a hexagonally ordered pattern were obtained. The photoactive polymer was prepared by grafting the photochromic component 1-(2-hydroxyethyl)-3,3-dimethylindoline-6-nitrobenzopyran (SP) to polystyrene-block-polymethacrylic acid (PS-b-PMMA). ZnS NPs were incorporated into the polymer solution, and the films were prepared using spin-coating on glass substrates before subjecting them to the BF method. The hollow footprints were obtained before introducing the ZnS NPs in order to maintain the necessary conditions for hexagonal film growth. Accordingly, the SEM micrographs of the films prepared in the presence of ZnS NPs displayed a loss in the pore arrangement as a consequence of the interaction between SP moiety and NPs. The light-emitting properties of films were characterized by blue and violet colors when exposed to UV light under fluorescence. Progress in the field of breath-figure formation and its application, such as exemplified in this work, leads to functional structures with suitable applications in chemistry and materials science. It is expected that such microstructured polymeric films will have interesting applications in photonic and optoelectronic devices.
RESUMO
In this study, we report a low cost, fast and unexplored electrochemical synthesis strategy of copper oxide nanoneedles films as well as their morphological and chemical characterization. The nanostructured films were prepared using electrochemical anodization in alkaline electrolyte solutions of ethylene glycol, water and fluoride ions. The film morphology shows nanoneedle-shaped structures, with lengths up to 1-2 µm; meanwhile, high-resolution X-ray photoelectron spectroscopy (HRXPS) and spectroscopy Raman analyses indicate that a mixture of Cu(II) and Cu(I) oxides, or only Cu(I) oxide, is obtained as the percentage of water in the electrolyte solution decreases. A preliminary study was also carried out for the photocatalytic degradation of the methylene blue (MB) dye under irradiation with simulated sunlight in the presence of the nanoneedles obtained, presenting a maximum degradation value of 88% of MB and, thus, demonstrating the potential characteristics of the material investigated in the degradation of organic dyes.
RESUMO
Outer membrane vesicles (OMVs) are nano-sized proteoliposomes discharged from the cell envelope of Gram-negative bacteria. OMVs normally contain toxins, enzymes and other factors, and are used as vehicles in a process that has been considered a generalized, evolutionarily conserved delivery system among bacteria. Furthermore, OMVs can be used in biotechnological applications that require delivery of biomolecules, such as vaccines, remarking the importance of their study. Although it is known that Salmonella enterica serovar Typhi (S. Typhi), the etiological agent of typhoid fever in humans, delivers toxins (e.g., HlyE) via OMVs, there are no reports identifying genetic determinants of the OMV biogenesis in this serovar. In the present work, and with the aim to identify genes participating in OMV biogenesis in S. Typhi, we screened 15,000 random insertion mutants for increased HlyE secretion. We found 9 S. Typhi genes (generically called zzz genes) determining an increased HlyE secretion that were also involved in OMV biogenesis. The genes corresponded to ompA, nlpI, and tolR (envelope stability), rfaE and waaC (LPS synthesis), yipP (envC), mrcB (synthesis and remodeling of peptidoglycan), degS (stress sensor serine endopeptidase) and hns (global transcriptional regulator). We found that S. Typhi Δzzz mutants were prone to secrete periplasmic, functional proteins with a relatively good envelope integrity. In addition, we showed that zzz genes participate in OMV biogenesis, modulating different properties such as OMV size distribution, OMV yield and OMV protein cargo.
RESUMO
The fabrication of porous-structured polymer films with patterned surface structures has recently attracted increased interest within the material science field. In this work, a series of microstructure scale patterned polymer films were obtained via breath figure methods (BF) with hydrophobic surface films based on self-assembled diblock copolymers by atom-transfer radical polymerization (ATRP). The surface characteristics and morphological properties, pore size, roughness, thickness, and wettability of the block copolymer films was studied in response to variation of the hydrophilic co-monomer structures. A significant improvement of the quality and order of the hydrophobic films was observed in response to thermal annealing and a consequent optimization of the assembly process.
RESUMO
It has been reported that the structure of the Schiff bases is fundamental for their function in biomedical applications. Pyridine Schiff bases are characterized by the presence of a pyridine and a phenolic ring, connected by an azomethine group. In this case, the nitrogen present in the pyridine is responsible for antifungal effects, where the phenolic ring may be also participating in this bioactivity. In this study, we synthesized two new pyridine Schiff Bases: (E)-2-[(3-Amino-pyridin-4-ylimino)-methyl]-4,6-difluoro-phenol (F1) and (E)- 2-[(3-Amino-pyridin-4-ylimino)-methyl]-6-fluoro-phenol (F2), which only differ in the fluorine substitutions in the phenolic ring. We fully characterized both F1 and F2 by FTIR, UV-vis, 1H; 13C; 19F-NMR, DEPT, HHCOSY, TOCSY, and cyclic voltammetry, as well as by computational studies (DFT), and NBO analysis. In addition, we assessed the antifungal activity of both F1 (two fluorine substitution at positions 4 and 6 in the phenolic ring) and F2 (one fluorine substitution at position 6 in the phenolic ring) against yeasts. We found that only F1 exerted a clear antifungal activity, showing that, for these kind of Schiff bases, the phenolic ring substitutions can modulate biological properties. In addition, we included F1 and F2 into in epichlorohydrin-ß-cyclodextrin polymer (ßCD), where the Schiff bases remained inside the ßCD as determined by the ki , TGA, DSC, and SBET. We found that the inclusion in ßCD improved the solubility in aqueous media and the antifungal activity of both F1 and F2, revealing antimicrobial effects normally hidden by the presence of common solvents (e.g., DMSO) with some cellular inhibitory activity. The study of structural prerequisites for antimicrobial activity, and the inclusion in polymers to improve solubility, is important for the design of new drugs.
RESUMO
ß-Cyclodextrin (ßCD), the less water soluble of the cyclodextrins, has been used as a capping agent in the preparation of semiconductor nanocrystals or quantum dots (QDs). Nevertheless, no reports have been found in the use of the highly water-soluble polymer of this, prepared by the crosslinking of the ßCD units with epichlorohydrin in basic medium (ßCDP). This polymer, besides to overcome the low solubility of the ßCD, increases the inclusion constant of the guest; two parameters that deserve its use as capping agent, instead of the native cyclodextrin. In the present manuscript, we afforded the in-situ aqueous preparation of cadmium telluride (CdTe) QDs capped with ßCDP. The polymer influence on the photoluminescent properties of the nanocrystals was analyzed. The ßCDP controls the nanocrystals growth during the Oswald ripening stage. Consequently, the CdTe capped ßCDP QDs showed lower Stokes-shift values, higher photoluminescent efficiency, and narrower size distribution than for nanocrystals obtained in the absence of polymer. Transmission electron microscopy (TEM) micrographs and energy dispersive X-ray spectroscopy (EDS) analysis revealed the composition and crystallinity of the CdTe QDs. This ßCDP capped CdTe QDs is a potential scaffold for the supramolecular modification of QDs surface.