Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
BMC Genomics ; 24(1): 597, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805453

RESUMO

BACKGROUND: Transcription factors (TFs) exhibit heterogeneous DNA-binding specificities in individual cells and whole organisms under natural conditions, and de novo motif discovery usually provides multiple motifs, even from a single chromatin immunoprecipitation-sequencing (ChIP-seq) sample. Despite the accumulation of ChIP-seq data and ChIP-seq-derived motifs, the diversity of DNA-binding specificities across different TFs and cell types remains largely unexplored. RESULTS: Here, we applied MOCCS2, our k-mer-based motif discovery method, to a collection of human TF ChIP-seq samples across diverse TFs and cell types, and systematically computed profiles of TF-binding specificity scores for all k-mers. After quality control, we compiled a set of TF-binding specificity score profiles for 2,976 high-quality ChIP-seq samples, comprising 473 TFs and 398 cell types. Using these high-quality samples, we confirmed that the k-mer-based TF-binding specificity profiles reflected TF- or TF-family dependent DNA-binding specificities. We then compared the binding specificity scores of ChIP-seq samples with the same TFs but with different cell type classes and found that half of the analyzed TFs exhibited differences in DNA-binding specificities across cell type classes. Additionally, we devised a method to detect differentially bound k-mers between two ChIP-seq samples and detected k-mers exhibiting statistically significant differences in binding specificity scores. Moreover, we demonstrated that differences in the binding specificity scores between k-mers on the reference and alternative alleles could be used to predict the effect of variants on TF binding, as validated by in vitro and in vivo assay datasets. Finally, we demonstrated that binding specificity score differences can be used to interpret disease-associated non-coding single-nucleotide polymorphisms (SNPs) as TF-affecting SNPs and provide candidates responsible for TFs and cell types. CONCLUSIONS: Our study provides a basis for investigating the regulation of gene expression in a TF-, TF family-, or cell-type-dependent manner. Furthermore, our differential analysis of binding-specificity scores highlights noncoding disease-associated variants in humans.


Assuntos
Polimorfismo de Nucleotídeo Único , Fatores de Transcrição , Humanos , Sítios de Ligação/genética , Ligação Proteica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA/metabolismo
2.
Bioinformatics ; 38(21): 4868-4877, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36063454

RESUMO

MOTIVATION: Cell-cell communications regulate internal cellular states, e.g. gene expression and cell functions, and play pivotal roles in normal development and disease states. Furthermore, single-cell RNA sequencing methods have revealed cell-to-cell expression variability of highly variable genes (HVGs), which is also crucial. Nevertheless, the regulation of cell-to-cell expression variability of HVGs via cell-cell communications is still largely unexplored. The recent advent of spatial transcriptome methods has linked gene expression profiles to the spatial context of single cells, which has provided opportunities to reveal those regulations. The existing computational methods extract genes with expression levels influenced by neighboring cell types. However, limitations remain in the quantitativeness and interpretability: they neither focus on HVGs nor consider the effects of multiple neighboring cell types. RESULTS: Here, we propose CCPLS (Cell-Cell communications analysis by Partial Least Square regression modeling), which is a statistical framework for identifying cell-cell communications as the effects of multiple neighboring cell types on cell-to-cell expression variability of HVGs, based on the spatial transcriptome data. For each cell type, CCPLS performs PLS regression modeling and reports coefficients as the quantitative index of the cell-cell communications. Evaluation using simulated data showed our method accurately estimated the effects of multiple neighboring cell types on HVGs. Furthermore, applications to the two real datasets demonstrate that CCPLS can extract biologically interpretable insights from the inferred cell-cell communications. AVAILABILITY AND IMPLEMENTATION: The R package is available at https://github.com/bioinfo-tsukuba/CCPLS. The data are available at https://github.com/bioinfo-tsukuba/CCPLS_paper. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Transcriptoma , Análise dos Mínimos Quadrados , Sequenciamento do Exoma , Análise Espacial , Análise de Sequência de RNA/métodos
3.
Clin Endocrinol (Oxf) ; 99(1): 103-112, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066992

RESUMO

BACKGROUND: The prognosis of autoimmune thyroid diseases (AITDs), including Graves' disease (GD) and Hashimoto's disease (HD), varies among patients. B7-H3 and B7-H4, members of the B7 family of proteins, regulate immune response. To clarify the association of B7-H3 and B7-H4 with the pathogenesis and prognosis of AITDs, we examined the expression of the soluble and membrane form of B7-H3 and B7-H4 and genotyped single nucleotide polymorphisms (SNPs) in the B7H3 and B7H4 genes. METHODS: We examined the expression of the membrane form of B7-H3 and B7-H4 by flow cytometry and their soluble forms by enzyme-linked immunosorbent assay. We genotyped SNPs in B7H3 and B7H4 in 187 GD patients, 217 HD patients, and 110 healthy volunteers using the PCR-RFLP method. RESULTS: The frequency of the B7H3 rs3816661 CC genotype was higher in patients with severe HD. G carriers of B7H4 rs10754339 A/G and B7H4 rs13505 T/G were more frequent in patients with AITD. A carrier of B7H4 rs10158166 A/G and C carriers of B7H4 rs3806373 C/T were more frequent in patients with intractable GD. The proportion of B7-H3+ monocytes was higher in the CC genotype of B7H3 rs3816661 C/T than in the other genotypes and was lower in patients with GD and HD than in healthy controls. The concentration of soluble B7-H4 was lower in the TG genotype of B7H4 rs13505 T/G than in the TT genotype and was higher in patients with AITD than in healthy controls. CONCLUSION: B7H3 and B7H4 are associated with AITD susceptibility and prognosis.


Assuntos
Doença de Graves , Doença de Hashimoto , Humanos , Doença de Hashimoto/genética , Doença de Hashimoto/patologia , Predisposição Genética para Doença , Alelos , Genótipo , Prognóstico , Polimorfismo de Nucleotídeo Único/genética , Frequência do Gene
4.
BMC Genomics ; 21(1): 177, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122302

RESUMO

BACKGROUND: Read coverage of RNA sequencing data reflects gene expression and RNA processing events. Single-cell RNA sequencing (scRNA-seq) methods, particularly "full-length" ones, provide read coverage of many individual cells and have the potential to reveal cellular heterogeneity in RNA transcription and processing. However, visualization tools suited to highlighting cell-to-cell heterogeneity in read coverage are still lacking. RESULTS: Here, we have developed Millefy, a tool for visualizing read coverage of scRNA-seq data in genomic contexts. Millefy is designed to show read coverage of all individual cells at once in genomic contexts and to highlight cell-to-cell heterogeneity in read coverage. By visualizing read coverage of all cells as a heat map and dynamically reordering cells based on diffusion maps, Millefy facilitates discovery of "local" region-specific, cell-to-cell heterogeneity in read coverage. We applied Millefy to scRNA-seq data sets of mouse embryonic stem cells and triple-negative breast cancers and showed variability of transcribed regions including antisense RNAs, 3 ' UTR lengths, and enhancer RNA transcription. CONCLUSIONS: Millefy simplifies the examination of cellular heterogeneity in RNA transcription and processing events using scRNA-seq data. Millefy is available as an R package (https://github.com/yuifu/millefy) and as a Docker image for use with Jupyter Notebook (https://hub.docker.com/r/yuifu/datascience-notebook-millefy).


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Células-Tronco Embrionárias Murinas/citologia , Análise de Célula Única/métodos , Neoplasias de Mama Triplo Negativas/genética , Regiões 3' não Traduzidas , Animais , Células Cultivadas , Feminino , Heterogeneidade Genética , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/química , RNA Antissenso/genética , Análise de Sequência de RNA/métodos , Software
5.
Biochem Biophys Res Commun ; 527(4): 993-999, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32446559

RESUMO

Most viruses inhibit the innate immune system and/or the RNA degradation processes of host cells to construct an advantageous intracellular environment for their survival. Characteristic RNA sequences within RNA virus genomes or RNAs transcribed from DNA virus genomes contribute toward this inhibition. In this study, we developed a method called "Fate-seq" to comprehensively identify the RNA sequences derived from RNA and DNA viruses, contributing RNA stability in the cells. We examined the stabilization activity of 5,924 RNA fragments derived from 26 different viruses (16 RNA viruses and 10 DNA viruses) using next-generation sequencing of these RNAs fused 3' downstream of GFP reporter RNA. With the Fate-seq approach, we detected multiple virus-derived RNA sequences that stabilized GFP reporter RNA, including sequences derived from severe acute respiratory syndrome-related coronavirus (SARS-CoV). Comparative genomic analysis revealed that these RNA sequences and their predicted secondary structures are highly conserved between SARS-CoV and the novel coronavirus, SARS-CoV-2, which is responsible for the global outbreak of the coronavirus-associated disease that emerged in December 2019 (COVID-19). These sequences have the potential to enhance the stability of viral RNA genomes, thereby augmenting viral replication efficiency and virulence.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Estabilidade de RNA , RNA Viral/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Sequência de Bases , Betacoronavirus/química , COVID-19 , Sequência Conservada , Coronaviridae/genética , Genoma Viral , Células HeLa , Humanos , Conformação de Ácido Nucleico , Pandemias , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , SARS-CoV-2 , Análise de Sequência de RNA
6.
Immunol Invest ; 49(1-2): 106-119, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31505972

RESUMO

The prognosis of autoimmune thyroid diseases (AITDs), including Graves' disease (GD) and Hashimoto's disease (HD), varies among patients. The interaction of CD58 and its ligand (CD2) promotes the differentiation of regulatory T cells and suppresses the immune response. To clarify the association of CD58 expression with the pathogenesis and prognosis of AITDs, we genotyped polymorphisms in the CD58 gene including rs12044852A/C (SNP1), rs2300747A/G (SNP2), rs1335532C/T (SNP3), rs1016140G/T (SNP4), rs1414275C/T (SNP5) and rs11588376C/T (SNP6). The CD58 SNPs were genotyped in 177 GD patients, 193 HD patients and 116 healthy volunteers (control subjects). We used the Polymerase chain reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) method for the genotyping of SNP1 and SNPs3-6 and the TaqMan® SNP genotyping assay for the genotyping of SNP2. The frequencies of the AA genotype in SNP1 tend to be high in all patients with AITDs than in control subjects, although it was not significant. The GG genotype of SNP2, the CC genotype of SNP3, the TT genotype of SNP4, the CC genotype of SNP5 and the CC genotype of SNP6 were all significantly more frequent in patients with AITDs than in control subjects. The proportion of CD58+ cells in monocytes was significantly lower in healthy individuals with each of these risk genotypes of AITDs and lower in GD and HD patients than that in healthy controls. In conclusion, CD58 SNPs are involved in AITD susceptibility through the reduction in CD58 expression, which probably suppresses regulatory T cells.


Assuntos
Antígenos CD58/genética , Doença de Graves/genética , Doença de Hashimoto/genética , Adulto , Idoso , Feminino , Predisposição Genética para Doença/genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prognóstico
7.
Immunol Invest ; 49(1-2): 191-203, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31755324

RESUMO

The prognosis of autoimmune thyroid diseases (AITDs), such as Graves' disease (GD) and Hashimoto's disease (HD), are difficult to predict. Both CD80 and CD86 costimulatory signals promote T cell activation in cooperation with T cell receptor signal. To clarify whether any association between CD80 and CD86 and the pathogenesis of AITD exist, we examined the expressions and gene polymorphisms of CD80 and CD86. We examined the expressions of CD80 and CD86 proteins on peripheral blood cells by flowcytometry and genotyped CD80 and CD86 gene polymorphisms by PCR-RFLP and Taqman PCR methods. In the analysis of the Blymphocytes elevated CD80+ cells (>8%) were found more often in the patients than in control subjects, and also it was more frequent in patients with intractable GD than in those with GD in remission (p= .0176). The mean fluorescence intensity of CD86 expression on monocytes was higher in GD and HD patients than in control subjects (p= <0.0001 and p= .0017, respectively). CD80 rs1599795 T allele carriers were more frequent in patients with severe HD than in those with mild HD. CD86 rs2715267 AA genotype was more frequent in HD patients than in controls. In conclusion, the expressions of CD80 on Bcells and of CD86 on monocytes were increased in peripheral blood from patients with AITD, especially in severe cases, and their gene polymorphisms are associated with the susceptibility and the severity of HD.


Assuntos
Antígeno B7-1/genética , Antígeno B7-2/genética , Doença de Graves/genética , Doença de Hashimoto/genética , Adulto , Linfócitos B/metabolismo , Antígeno B7-1/biossíntese , Antígeno B7-2/biossíntese , Feminino , Predisposição Genética para Doença/genética , Doença de Graves/metabolismo , Doença de Hashimoto/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Polimorfismo de Nucleotídeo Único
8.
Am J Physiol Regul Integr Comp Physiol ; 312(2): R231-R244, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003213

RESUMO

Marine teleosts can absorb imbibed seawater (SW) to maintain water balance, with esophageal desalination playing an essential role. NaCl absorption from luminal SW was enhanced 10-fold in the esophagus of SW-acclimated eels, and removal of Na+ or Cl- from luminal SW abolished the facilitated absorption, indicating coupled transport. Mucosal/serosal application of various blockers for Na+/Cl- transporters profoundly decreased the absorption. Among the transporter genes expressed in eel esophagus detected by RNA-seq, dimethyl amiloride-sensitive Na+/H+ exchanger (NHE3) and 4,4'-diisothiocyano-2,2'-disulfonic acid-sensitive Cl-/[Formula: see text] exchanger (AE) coupled by the scaffolding protein on the apical membrane of epithelial cells, and ouabain-sensitive Na+-K+-ATPases (NKA1α1c and NKA3α) and diphenylamine-2-carboxylic acid-sensitive Cl- channel (CLCN2) on the basolateral membrane, may be responsible for enhanced transcellular NaCl transport because of their profound upregulation after SW acclimation. Upregulated carbonic anhydrase 2a (CA2a) supplies H+ and [Formula: see text] for activation of the coupled NHE and AE. Apical hydrochlorothiazide-sensitive Na+-Cl- cotransporters and basolateral Na+-[Formula: see text] cotransporter (NBCe1) and AE1 are other possible candidates. Concerning the low water permeability that is typically seen in marine teleost esophagus, downregulated aquaporin genes (aqp1a and aqp3) and upregulated claudin gene (cldn15a) are candidates for transcellular/paracellular route. In situ hybridization showed that these upregulated transporters and tight-junction protein genes were expressed in the absorptive columnar epithelial cells of eel esophagus. These results allow us to provide a full picture of the molecular mechanism of active desalination and low water permeability that are characteristic to marine teleost esophagus and gain deeper insights into the role of gastrointestinal tracts in SW acclimation.


Assuntos
Enguias/fisiologia , Esôfago/fisiologia , Absorção Gastrointestinal/fisiologia , Águas Salinas/farmacocinética , Tolerância ao Sal/fisiologia , Simportadores de Cloreto de Sódio-Potássio/fisiologia , Animais , Permeabilidade da Membrana Celular/fisiologia , Ativação do Canal Iônico/fisiologia , Água do Mar , Cloreto de Sódio/farmacocinética
9.
BMC Genomics ; 15: 735, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25168270

RESUMO

BACKGROUND: Understanding the genetic basis of adaptive evolution is one of the major goals in evolutionary biology. Recently, it has been revealed that gene copy number variations (GCNVs) constitute significant proportions of genomic diversities within natural populations. However, it has been unclear whether GCNVs are under positive selection and contribute to adaptive evolution. Parallel evolution refers to adaptive evolution of the same trait in related but independent lineages, and three-spined stickleback (Gasterosteus aculeatus) is a well-known model organism. Through identification of genetic variations under parallel selection, i.e., variations shared among related but independent lineages, evidence of positive selection is obtained. In this study, we investigated whole-genome resequencing data from the marine and freshwater groups of three-spined sticklebacks from diverse areas along the Pacific and Atlantic Ocean coastlines, and searched for GCNVs under parallel selection. RESULTS: We identified 24 GCNVs that showed significant differences in the numbers of mapped reads between the two groups, and this number was significantly larger than that expected by chance. The derived group, i.e., freshwater group, was typically characterized by larger gene-copy numbers, which implied that gene duplications or multiplications helped with adaptation to the freshwater environment. Some of the identified GCNVs were those of multigenic family genes, which is consistent with the theory that fatal effects due to copy-number changes of multigenic family genes tend to be less than those of single-copy genes. CONCLUSION: The identification of GCNVs that were likely under parallel selection suggests that contribution of GCNVs should be considered in studies on adaptive evolution.


Assuntos
Smegmamorpha/genética , Animais , Variações do Número de Cópias de DNA , Evolução Molecular , Proteínas de Peixes/genética , Água Doce , Deleção de Genes , Dosagem de Genes , Duplicação Gênica , Expressão Gênica , Anotação de Sequência Molecular , Fenótipo , Água do Mar , Seleção Genética
10.
BMC Genomics ; 15: 1134, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25520040

RESUMO

BACKGROUND: Teleost intestine is crucial for seawater acclimation by sensing osmolality of imbibed seawater and regulating drinking and water/ion absorption. Regulatory genes for transforming intestinal function have not been identified. A transcriptomic approach was used to search for such genes in the intestine of euryhaline medaka. RESULTS: Quantitative RNA-seq by Illumina Hi-Seq Sequencing method was performed to analyze intestinal gene expression 0 h, 1 h, 3 h, 1 d, and 7 d after seawater transfer. Gene ontology (GO) enrichment results showed that cell adhesion, signal transduction, and protein phosphorylation gene categories were augmented soon after transfer, indicating a rapid reorganization of cellular components and functions. Among >50 transiently up-regulated transcription factors selected via co-expression correlation and GO selection, five transcription factors, including CEBPB and CEBPD, were confirmed by quantitative PCR to be specific to hyperosmotic stress, while others were also up-regulated after freshwater control transfer, including some well-known osmotic-stress transcription factors such as SGK1 and TSC22D3/Ostf1. Protein interaction networks suggest a high degree of overlapping among the signaling of transcription factors that respond to osmotic and general stresses, which sheds light on the interpretation of their roles during hyperosmotic stress and emergency. CONCLUSIONS: Since cortisol is an important hormone for seawater acclimation as well as for general stress in teleosts, emergency and osmotic challenges could have been evolved in parallel and resulted in the overlapped signaling networks. Our results revealed important interactions among transcription factors and offer a multifactorial perspective of genes involved in seawater acclimation.


Assuntos
Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Mucosa Intestinal/metabolismo , Oryzias/genética , Oryzias/metabolismo , Osmose , Fatores de Transcrição/metabolismo , Animais , Mapeamento Cromossômico , Água Doce/química , Ontologia Genética , Mapeamento de Interação de Proteínas , Água do Mar/química , Regulação para Cima
11.
Clin Exp Pharmacol Physiol ; 41(5): 331-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24606534

RESUMO

Dietary fructose ingestion during gestation affects carbohydrate metabolism in the offspring. In the present study, we investigated the effects of excess fructose intake during pregnancy on hepatic and hypothalamic AMP-activated kinase (AMPK) expression and phosphorylation, as well as hepatic glucose-6-phosphatase (G6Pase) activity in offspring. Pregnant Wistar rats received normal chow and 100 g/L fructose solution or normal water during gestation ad libitum. On gestational Day 21, some dams were killed and plasma samples and fetuses were collected. The remaining dams received normal water after spontaneous delivery during lactation. Pups were killed on postnatal Day 22 and the plasma, liver and hypothalamus were collected and analysed. Plasma glucose and insulin levels increased in female but not male offspring in the fructose group. Although the mRNA and total protein levels of AMPKα were unchanged, levels of phosphorylated AMPKα protein in the fructose group of female offspring were significantly lower in the liver and 4.6-fold higher in the hypothalamus. The hepatic protein level of sirtuin 1, which is involved in AMPK phosphorylation and activation, was significantly reduced in the fructose group of female offspring. The activity of G6Pase, which plays a role in gluconeogenesis, was significantly enhanced in the liver of female offspring from fructose-fed dams. These changes were not observed in male offspring. In conclusion, we found that excessively high fructose intake during pregnancy may modulate the hepatic and hypothalamic AMPK signalling pathways in female offspring after birth.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Frutose/efeitos adversos , Hipotálamo/enzimologia , Fígado/enzimologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Caracteres Sexuais , Edulcorantes/efeitos adversos , Animais , Glicemia/análise , Feminino , Sangue Fetal/química , Frutose/administração & dosagem , Idade Gestacional , Hipotálamo/embriologia , Hipotálamo/crescimento & desenvolvimento , Insulina/sangue , Fígado/embriologia , Fígado/crescimento & desenvolvimento , Masculino , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/enzimologia , Ratos Wistar , Transdução de Sinais , Edulcorantes/administração & dosagem
12.
Neurosci Res ; 207: 13-25, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38537682

RESUMO

Sleep is homeostatically regulated by sleep pressure, which increases during wakefulness and dissipates during sleep. Recent studies have suggested that the cerebral neocortex, a six-layered structure composed of various layer- and projection-specific neuronal subtypes, is involved in the representation of sleep pressure governed by transcriptional regulation. Here, we examined the transcriptomic changes in neuronal subtypes in the neocortex upon increased sleep pressure using single-nucleus RNA sequencing datasets and predicted the putative intracellular and intercellular molecules involved in transcriptome alterations. We revealed that sleep deprivation (SD) had the greatest effect on the transcriptome of layer 2 and 3 intratelencephalic (L2/3 IT) neurons among the neocortical glutamatergic neuronal subtypes. The expression of mutant SIK3 (SLP), which is known to increase sleep pressure, also induced profound changes in the transcriptome of L2/3 IT neurons. We identified Junb as a candidate transcription factor involved in the alteration of the L2/3 IT neuronal transcriptome by SD and SIK3 (SLP) expression. Finally, we inferred putative intercellular ligands, including BDNF, LSAMP, and PRNP, which may be involved in SD-induced alteration of the transcriptome of L2/3 IT neurons. We suggest that the transcriptome of L2/3 IT neurons is most impacted by increased sleep pressure among neocortical glutamatergic neuronal subtypes and identify putative molecules involved in such transcriptional alterations.


Assuntos
Neocórtex , Neurônios , Privação do Sono , Sono , Transcriptoma , Animais , Neocórtex/metabolismo , Neurônios/metabolismo , Privação do Sono/metabolismo , Privação do Sono/genética , Privação do Sono/fisiopatologia , Sono/fisiologia , Sono/genética , Camundongos , Masculino , Camundongos Endogâmicos C57BL
13.
SLAS Technol ; 28(2): 55-62, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36503082

RESUMO

The spot assay of the budding yeast Saccharomyces cerevisiae is an experimental method that is used to evaluate the effect of genotypes, medium conditions, and environmental stresses on cell growth and survival. Automation of the spot assay experiments from preparing a dilution series to spotting to observing spots continuously has been implemented based on large laboratory automation devices and robots, especially for high-throughput functional screening assays. However, there has yet to be an affordable solution for the automated spot assays suited to researchers in average laboratories and with high customizability for end-users. To make reproducible spot assay experiments widely available, we have automated the plate-based yeast spot assay of budding yeast using Opentrons OT-2 (OT-2), an affordable liquid-handling robot, and a flatbed scanner. We prepared a 3D-printed mount for the Petri dish to allow for precise placement of the Petri dish inside the OT-2. To account for the uneven height of the agar plates, which were made by human hands, we devised a method to adjust the z-position of the pipette tips based on the weight of each agar plate. During the incubation of the agar plates, a flatbed scanner was used to automatically take images of the agar plates over time, allowing researchers to quantify and compare the cell density within the spots at optimal time points a posteriori. Furthermore, the accuracy of the newly developed automated spot assay was verified by performing spot assays with human experimenters and the OT-2 and quantifying the yeast-grown area of the spots. This study will contribute to the introduction of automated spot assays and the automated acquisition of growth processes in conventional laboratories that are not adapted for high-throughput laboratory automation.


Assuntos
Robótica , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Ágar , Automação , Genótipo
14.
SLAS Technol ; 28(4): 264-277, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36997066

RESUMO

During laboratory automation of life science experiments, coordinating specialized instruments and human experimenters for various experimental procedures is important to minimize the execution time. In particular, the scheduling of life science experiments requires the consideration of time constraints by mutual boundaries (TCMB) and can be formulated as the "scheduling for laboratory automation in biology" (S-LAB) problem. However, existing scheduling methods for the S-LAB problems have difficulties in obtaining a feasible solution for large-size scheduling problems at a time sufficient for real-time use. In this study, we proposed a fast schedule-finding method for S-LAB problems, SAGAS (Simulated annealing and greedy algorithm scheduler). SAGAS combines simulated annealing and the greedy algorithm to find a scheduling solution with the shortest possible execution time. We have performed scheduling on real experimental protocols and shown that SAGAS can search for feasible or optimal solutions in practicable computation time for various S-LAB problems. Furthermore, the reduced computation time by SAGAS enables us to systematically search for laboratory automation with minimum execution time by simulating scheduling for various laboratory configurations. This study provides a convenient scheduling method for life science automation laboratories and presents a new possibility for designing laboratory configurations.


Assuntos
Algoritmos , Automação Laboratorial , Humanos , Laboratórios
15.
Intern Med ; 62(21): 3163-3166, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36948620

RESUMO

Aortitis is a rare adverse event associated with granulocyte colony-stimulating factor (G-CSF). Contrast-enhanced computed tomography (CECT) is widely used to diagnose G-CSF-associated aortitis. However, the usefulness of gallium scintigraphy for the diagnosis of G-CSF-associated aortitis is unknown. We herein report a set of pre- and post-treatment gallium scintigrams of a patient with G-CSF-associated aortitis. During the diagnosis, gallium scintigraphy revealed hot spots on the arterial walls that appeared inflamed on CECT. Both the CECT and gallium scintigraphy findings disappeared. Gallium scintigraphy can be a supportive diagnostic tool for G-CSF-associated aortitis, especially in patients with an impaired renal function or allergy to iodine contrast.


Assuntos
Aortite , Gálio , Humanos , Aortite/diagnóstico por imagem , Aortite/induzido quimicamente , Fator Estimulador de Colônias de Granulócitos/efeitos adversos , Cintilografia , Tomografia Computadorizada por Raios X
16.
Sci Rep ; 13(1): 19118, 2023 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-37926704

RESUMO

Each tissue has a dominant set of functional proteins required to mediate tissue-specific functions. Epigenetic modifications, transcription, and translational efficiency control tissue-dominant protein production. However, the coordination of these regulatory mechanisms to achieve such tissue-specific protein production remains unclear. Here, we analyzed the DNA methylome, transcriptome, and proteome in mouse liver and skeletal muscle. We found that DNA hypomethylation at promoter regions is globally associated with liver-dominant or skeletal muscle-dominant functional protein production within each tissue, as well as with genes encoding proteins involved in ubiquitous functions in both tissues. Thus, genes encoding liver-dominant proteins, such as those involved in glycolysis or gluconeogenesis, the urea cycle, complement and coagulation systems, enzymes of tryptophan metabolism, and cytochrome P450-related metabolism, were hypomethylated in the liver, whereas those encoding-skeletal muscle-dominant proteins, such as those involved in sarcomere organization, were hypomethylated in the skeletal muscle. Thus, DNA hypomethylation characterizes genes encoding tissue-dominant functional proteins.


Assuntos
Metilação de DNA , Fígado , Camundongos , Animais , Fígado/metabolismo , Músculo Esquelético/metabolismo , Epigênese Genética , Proteínas Musculares/metabolismo , DNA/metabolismo
17.
STAR Protoc ; 3(1): 101179, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243371

RESUMO

Glycans are structurally diverse molecules found on the surface of living cells. The protocol details a system developed for combined analysis of glycan and RNA in single cells (scGR-seq) using human induced pluripotent stem cells (hiPSCs) and hiPSC-derived neural progenitor cells (NPCs). scGR-seq consists of DNA-barcoded lectin-based glycan profiling by sequencing (scGlycan-seq) and single-cell transcriptome profiling (scRNA-seq). scGR-seq will be an essential technique to delineate the cellular heterogeneity of glycans across multicellular systems. For complete details on the use and execution of this profile, please refer to Minoshima et al. (2021).


Assuntos
Células-Tronco Pluripotentes Induzidas , RNA , Humanos , Polissacarídeos , RNA/genética , Análise de Célula Única/métodos , Transcriptoma/genética
18.
BMC Res Notes ; 15(1): 172, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562782

RESUMO

OBJECTIVE: Portal mesenchymal cells induce the epithelial differentiation of the bile ducts in the developing liver via one of the Delta-Notch signaling components, JAGGED1. Although this differential induction is crucial for normal liver physiology as its genetic disorder (Alagille syndrome) causes jaundice, the molecular mechanism behind JAGGED1 expression remains unknown. Here, we searched for upstream regulatory transcription factors of JAGGED1 using an integrated bioinformatics method. RESULTS: According to the DoRothEA database, which integrates multiple lines of evidence on the relationship between transcription factors and their downstream target genes, three transcription factors were predicted to be upstream of JAGGED1: SLUG, SOX2, and EGR1. Among these, SLUG and EGR1 were enriched in ACTA2-expressing portal mesenchymal cells in two previously reported human fetal liver single-cell RNA-seq datasets. JAGGED1-expressing portal mesenchymal cells tended to express SLUG rather than EGR1, supporting that SLUG induced JAGGED1 expression. Together with the higher confidentiality of SLUG (DoRothEA level A) over EGR1 (DoRothEA level D), we concluded that SLUG was one of the most important candidate transcription factors upstream of JAGGED1. These results add mechanistic insights into the developmental biology of how portal mesenchymal cells support biliary development in the liver.


Assuntos
Síndrome de Alagille , Proteínas de Membrana , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Hepatócitos , Humanos , Proteína Jagged-1 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fatores de Transcrição/genética
19.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37848618

RESUMO

BACKGROUND: Bats harbor various viruses without severe symptoms and act as their natural reservoirs. The tolerance of bats against viral infections is assumed to originate from the uniqueness of their immune system. However, how immune responses vary between primates and bats remains unclear. Here, we characterized differences in the immune responses by peripheral blood mononuclear cells to various pathogenic stimuli between primates (humans, chimpanzees, and macaques) and bats (Egyptian fruit bats) using single-cell RNA sequencing. RESULTS: We show that the induction patterns of key cytosolic DNA/RNA sensors and antiviral genes differed between primates and bats. A novel subset of monocytes induced by pathogenic stimuli specifically in bats was identified. Furthermore, bats robustly respond to DNA virus infection even though major DNA sensors are dampened in bats. CONCLUSIONS: Overall, our data suggest that immune responses are substantially different between primates and bats, presumably underlying the difference in viral pathogenicity among the mammalian species tested.


Assuntos
Quirópteros , Viroses , Humanos , Animais , Quirópteros/genética , Leucócitos Mononucleares , Análise da Expressão Gênica de Célula Única , Imunidade Inata , Viroses/genética , Viroses/veterinária , Primatas/genética , DNA
20.
Sci Rep ; 12(1): 13719, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962137

RESUMO

Metabolic regulation in skeletal muscle is essential for blood glucose homeostasis. Obesity causes insulin resistance in skeletal muscle, leading to hyperglycemia and type 2 diabetes. In this study, we performed multiomic analysis of the skeletal muscle of wild-type (WT) and leptin-deficient obese (ob/ob) mice, and constructed regulatory transomic networks for metabolism after oral glucose administration. Our network revealed that metabolic regulation by glucose-responsive metabolites had a major effect on WT mice, especially carbohydrate metabolic pathways. By contrast, in ob/ob mice, much of the metabolic regulation by glucose-responsive metabolites was lost and metabolic regulation by glucose-responsive genes was largely increased, especially in carbohydrate and lipid metabolic pathways. We present some characteristic metabolic regulatory pathways found in central carbon, branched amino acids, and ketone body metabolism. Our transomic analysis will provide insights into how skeletal muscle responds to changes in blood glucose and how it fails to respond in obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Resistência à Insulina/fisiologia , Leptina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa