RESUMO
Background: Molecular hybridization and isostery are proven approaches in medicinal chemistry, and as such we used them to design novel compounds that we investigated as potential antimycobacterials to combat drug-resistant strains. Methods & results: Prepared N-alkyl-2-(pyrimidine-5-carbonyl)hydrazine-1-carboxamides were cyclized to N-alkyl-5-(pyrimidin-5-yl)-1,3,4-oxadiazol-2-amines along with their analogues. A total of 48 compounds were tested against Mycobacterium tuberculosis H37Rv, Mycobacterium avium and Mycobacterium kansasii, with oxadiazoles and C8-C12 alkyls being the most effective from a concentration of 2 µM. Multidrug-resistant strains were inhibited at same concentrations as the susceptible strain. For the most potent N-dodecyl-5-(pyrimidin-5-yl)-1,3,4-oxadiazol-2-amine, the mechanism of action related to cell wall biosynthesis was investigated. Conclusion: Pyrimidine-1,3,4-oxadiazole hybrids are unique antimycobacterial agents inhibiting mainly M. tuberculosis strains without cross-resistance to current drugs and are thus promising drug candidates.
Assuntos
Antibacterianos , Mycobacterium tuberculosis , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Oxidiazóis/farmacologia , Oxidiazóis/química , Pirimidinas/farmacologia , Aminas/farmacologia , Antituberculosos/farmacologia , Antituberculosos/química , Relação Estrutura-AtividadeRESUMO
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) affects 10 million people each year and the emergence of resistant TB augurs for a growing incidence. In the last 60 years, only three new drugs were approved for TB treatment, for which resistances are already emerging. Therefore, there is a crucial need for new chemotherapeutic agents capable of eradicating TB. Enzymes belonging to the type II fatty acid synthase system (FAS-II) are involved in the biosynthesis of mycolic acids, cell envelope components essential for mycobacterial survival. Among them, InhA is the primary target of isoniazid (INH), one of the most effective compounds to treat TB. INH acts as a prodrug requiring activation by the catalase-peroxidase KatG, whose mutations are the major cause for INH resistance. Herein, a new series of direct InhA inhibitors were designed based on a molecular hybridization approach. They exhibit potent inhibitory activities of InhA and, for some of them, good antitubercular activities. Moreover, they display a low toxicity on human cells. A study of the mechanism of action of the most effective molecules shows that they inhibit the biosynthesis of mycolic acids. The X-ray structures of two InhA/NAD+/inhibitor complexes have been obtained showing a binding mode of a part of the molecule in the minor portal, rarely seen in the InhA structures reported so far.
Assuntos
Antituberculosos , Mycobacterium tuberculosis , Humanos , Antituberculosos/farmacologia , Antituberculosos/química , Proteínas de Bactérias/metabolismo , Éter , Éteres/farmacologia , Etil-Éteres/farmacologia , Isoniazida/farmacologia , Mutação , Ácidos MicólicosRESUMO
Tuberculosis (TB) still poses a global menace as one of the deadliest infectious diseases. A quarter of the human population is indeed latently infected with Mycobacterium tuberculosis. People with latent infection have a 5 to 10% lifetime risk of becoming ill with TB, representing a reservoir for TB active infection. This is a worrisome problem to overcome in the case of relapse; unfortunately, few drugs are effective against nonreplicating M. tuberculosis cells. Novel strategies to combat TB, including its latent form, are urgently needed. In response to the lack of new effective drugs and after screening about 500 original chemical molecules, we selected a compound, 11726172, that is endowed with potent antitubercular activity against M. tuberculosis both in vitro and in vivo and importantly also against dormant nonculturable bacilli. We also investigated the mechanism of action of 11726172 by applying a multidisciplinary approach, including transcriptomic, labeled metabolomic, biochemical, and microbiological procedures. Our results represent an important step forward in the development of a new antitubercular compound with a novel mechanism of action active against latent bacilli. IMPORTANCE The discontinuation of TB services due to COVID-19 causes concern about a future resurgence of TB, also considering that latent infection affects a high number of people worldwide. To combat this situation, the identification of antitubercular compounds targeting Mycobacterium tuberculosis through novel mechanisms of action is necessary. These compounds should be active against not only replicating bacteria cells but also nonreplicating cells to limit the reservoir of latently infected people on which the bacterium can rely to spread after reactivation.
Assuntos
COVID-19 , Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologiaRESUMO
Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), one of the deadliest infectious diseases. The alarming health context coupled with the emergence of resistant M. tuberculosis strains highlights the urgent need to expand the range of anti-TB antibiotics. A subset of anti-TB drugs in use are prodrugs that require bioactivation by a class of M. tuberculosis enzymes called Baeyer-Villiger monooxygenases (BVMOs), which remain understudied. To examine the prevalence and the molecular function of BVMOs in mycobacteria, we applied a comprehensive bioinformatic analysis that identified six BVMOs in M. tuberculosis, including Rv3083 (MymA), Rv3854c (EthA), Rv0565c, and Rv0892, which were selected for further characterization. Homology modeling and substrate docking analysis, performed on this subset, suggested that Rv0892 is closer to the cyclohexanone BVMO, while Rv0565c and EthA are structurally and functionally similar to MymA, which is by far the most prominent type I BVMO enzyme. Thanks to an unprecedented purification and assay optimization, biochemical studies confirmed that all four BVMOs display BV-oxygenation activity. We also showed that MymA displays a distinctive substrate preference that we further investigated by kinetic parameter determination and that correlates with in silico modeling. We provide insights into distribution of BVMOs and the structural basis of their substrate profiling, and we discuss their possible redundancy in M. tuberculosis, raising questions about their versatility in prodrug activation and their role in physiology and infection. IMPORTANCE Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the leading causes of death worldwide. The rise in drug resistance highlights the urgent need for innovation in anti-TB drug development. Many anti-TB drugs require bioactivation by Baeyer-Villiger monooxygenases (BVMOs). Despite their emerging importance, BVMO structural and functional features remain enigmatic. We applied a comprehensive bioinformatic analysis and confirmed the presence of six BVMOs in M. tuberculosis, including MymA, EthA, and Rv0565c-activators of the second-line prodrug ethionamide-and the novel BVMO Rv0892. Combining in silico characterization with in vitro validation, we outlined their structural framework and substrate preference. Markedly, MymA displayed an enhanced capacity and a distinct selectivity profile toward ligands, in agreement with its catalytic site topology. These features ground the molecular basis for structure-function comprehension of the specificity in these enzymes and expand the repertoire of BVMOs with selective and/or overlapping activity for application in the context of improving anti-TB therapy.
Assuntos
Mycobacterium tuberculosis , Pró-Fármacos , Antituberculosos/farmacologia , Biologia Computacional , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Mycobacterium tuberculosis/genéticaRESUMO
Based on successful antitubercular isoniazid scaffold we have designed its "mee-too" analogues by a combination of this drug linked with substituted anilines through pyruvic acid as a bridge. Lipophilicity important for passive diffusion through impenetrable mycobacterial cell wall was increased by halogen substitution on the aniline. We prepared twenty new 2-(2-isonicotinoylhydrazineylidene)propanamides that were assayed against susceptible Mycobacterium tuberculosis H37Rv, nontuberculous mycobacteria, and also multidrug-resistant tuberculous strains (MDR-TB). All the compounds showed excellent activity not only against Mtb. (minimum inhibitory concentrations, MIC, from ≤0.03 µM), but also against M. kansasii (MIC ≥2 µM). The most active molecules have CF3 and OCF3 substituent in the position 4 on the aniline ring. MIC against MDR-TB were from 8 µM. The most effective derivatives were used for the mechanism of action investigation. The treatment of Mtb. H37Ra with tested compounds led to decreased production of mycolic acids and the strains overproducing InhA were more resistant to them. These results confirm that studied compounds inhibit the enoyl-acyl carrier protein reductase (InhA) in mycobacteria. The compounds did not show any cytotoxic and cytostatic activity for HepG2 cells. The amides can be considered as a promising scaffold for antitubercular drug discovery having better antimicrobial properties than original isoniazid together with a significantly improved pharmaco-toxicological profile.
Assuntos
Amidas/química , Antituberculosos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Oxirredutases/antagonistas & inibidores , Amidas/metabolismo , Amidas/farmacologia , Amidas/uso terapêutico , Compostos de Anilina/química , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Oxirredutases/metabolismo , Ácido Pirúvico/química , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológicoRESUMO
The combination of two active scaffolds into one molecule represents a proven approach in drug design to overcome microbial drug resistance. We designed and synthesized more lipophilic esters of 2-(2-isonicotinoylhydrazineylidene)propanoic acid, obtained from antitubercular drug isoniazid, with various alcohols, phenols and thiols, including several drugs, using carbodiimide-mediated coupling. Nineteen new esters were evaluated as potential antimycobacterial agents against drug-sensitive Mycobacterium tuberculosis (Mtb.) H37Rv, Mycobacterium avium and Mycobacterium kansasii. Selected derivatives were also tested for inhibition of multidrug-resistant (MDR) Mtb., and their mechanism of action was investigated. The esters exhibited high activity against Mtb. (minimum inhibitory concentrations, MIC, from ≤0.125 µM), M. kansasii, M. avium as well as MDR strains (MIC from 0.25, 32 and 8 µM, respectively). The most active mutual derivatives were derived from 4-chloro/phenoxy-phenols, triclosan, quinolin-8-ol, naphthols and terpene alcohols. The experiments identified enoyl-acyl carrier protein reductase (InhA), and thus mycobacterial cell wall biosynthesis, as the main target of the molecules that are activated by KatG, but for some compounds can also be expected adjunctive mechanism(s). Generally, the mutual esters have also avoided cytotoxicity and are promising hits for the discovery of antimycobacterial drugs with improved properties compared to parent isoniazid.