Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biochim Biophys Acta ; 1862(9): 1801-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27321931

RESUMO

Transforming growth factor beta 1 (TGF-ß1) is one of the most studied cytokines involved in renal tubulo-interstitial fibrosis, which is characterized by myofibroblast abundance and proliferation, and high buildup of extracellular matrix in the tubular interstitium leading to organ failure. Endoglin (Eng) is a 180-kDa homodimeric transmembrane protein that regulates a great number of TGF-ß1 actions in different biological processes, including ECM synthesis. High levels of Eng have been observed in experimental models of renal fibrosis or in biopsies from patients with chronic kidney disease. In humans and mice, two Eng isoforms are generated by alternative splicing, L-Eng and S-Eng that differ in the length and composition of their cytoplasmic domains. We have previously described that L-Eng overexpression promotes renal fibrosis after unilateral ureteral obstruction (UUO). However, the role of S-Eng in renal fibrosis is unknown and its study would let us analyze the possible function of the cytoplasmic domain of Eng in this process. For this purpose, we have generated a mice strain that overexpresses S-Eng (S-ENG(+)) and we have performed an UUO in S-ENG(+) and their wild type (WT) control mice. Our results indicate that obstructed kidney of S-ENG(+) mice shows lower levels of tubulo-interstitial fibrosis, less inflammation and less interstitial cell proliferation than WT littermates. Moreover, S-ENG(+) mice show less activation of Smad1 and Smad2/3 pathways. Thus, S-Eng overexpression reduces UUO-induced renal fibrosis and some associated mechanisms. As L-Eng overexpression provokes renal fibrosis we conclude that Eng-mediated induction of renal fibrosis in this model is dependent on its cytoplasmic domain.


Assuntos
Endoglina/genética , Endoglina/metabolismo , Rim/metabolismo , Rim/patologia , Nefrite/prevenção & controle , Obstrução Ureteral/metabolismo , Animais , Proliferação de Células , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Fibronectinas/metabolismo , Fibrose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Modelos Biológicos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Nefrite/metabolismo , Nefrite/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima , Obstrução Ureteral/complicações , Obstrução Ureteral/patologia
2.
Nephrol Dial Transplant ; 26(11): 3484-95, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21602180

RESUMO

BACKGROUND: Nephrotoxicity is the major limitation for the clinical use of cisplatin as an anti-tumoural drug. Our aim was to investigate the protective effect of quercetin on cisplatin nephrotoxicity in a rat tumour model in vivo and to examine the mechanisms of renal protection. METHODS: Breast adenocarcinoma (13762 Mat B-III) cells were inoculated subcutaneously in male Fischer rats and 7 days later, the rats were administered daily with quercetin [50 mg/kg/day, intraperitoneally (i.p.)] or vehicle. Four days after that, the rats were given a single dose of cisplatin (4 mg/kg, i.p.) or vehicle. Tumour growth and renal function were monitored throughout the experiment. Two or 6 days after cisplatin administration, the rats were killed and the kidneys and tumours were removed to examine renal function and toxicity markers in both tissues. RESULTS: In the kidney, cisplatin treatment induced: (i) a decrease in renal blood flow and glomerular filtration rate, (ii) tubular necrosis/apoptosis, (iii) increased lipid peroxidation and decreased endogenous antioxidant systems, (iv) increased expression of inflammation markers and (v) increased activity of the apoptosis executioner caspase-3. Cisplatin effectively reduced tumour size and weight. CONCLUSIONS: Co-treatment with quercetin partially prevented all the renal effects of cisplatin, whereas it did not impair its anti-tumour activity. In conclusion, in a model of tumour-bearing rats, quercetin prevents the nephrotoxic effect of cisplatin without affecting its anti-tumour activity.


Assuntos
Injúria Renal Aguda/prevenção & controle , Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Cisplatino/uso terapêutico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Quercetina/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Adenocarcinoma/complicações , Animais , Antineoplásicos/toxicidade , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3 , Cisplatino/toxicidade , Creatinina/urina , Quimioterapia Combinada , Feminino , Taxa de Filtração Glomerular , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Testes de Função Renal , Peroxidação de Lipídeos , Neoplasias Mamárias Experimentais/complicações , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
3.
Kidney Int ; 75(2): 205-13, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18818685

RESUMO

E-cadherin expression in the kidney is used as a surrogate marker of epithelial mesenchymal transition for the testing of various antifibrotic strategies. Here we reexamined E-cadherin expression in the kidneys of rats with unilateral ureteric obstruction, which was previously reported to decrease in parallel with the development of tubulointerstitial disease in this widely used experimental model of renal fibrosis and epithelial mesenchymal transition. E-cadherin mRNA expression was consistently increased both acutely (hours) and chronically (days) in the ligated kidney compared to the cognate non-ligated kidney. Increased E-cadherin protein levels were also found in the ligated kidney particularly in dilated tubular segments. Simulation of early pressure changes in the ligated kidney by mechanical stretch of human renal epithelial cells in culture did not alter E-cadherin expression. Porcine LLCPK-1 cells subjected to hypotonic stretch, however, did have increased E-cadherin mRNA and protein levels, responses that were not prevented by transforming growth factor-beta, a cytokine that promotes epithelial mesenchymal transition. Our findings question the utility of E-cadherin as a marker of epithelial mesenchymal transition in this model of renal fibrosis.


Assuntos
Caderinas/genética , Fibrose/patologia , Nefropatias/patologia , Obstrução Ureteral , Animais , Biomarcadores , Linhagem Celular , Forma Celular , Transdiferenciação Celular , Modelos Animais de Doenças , Células Epiteliais/citologia , Fibrose/metabolismo , Regulação da Expressão Gênica , Nefropatias/metabolismo , Células-Tronco Mesenquimais/citologia , Pressão , RNA Mensageiro/análise , Ratos , Suínos
4.
Circ Res ; 99(3): 248-56, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16840721

RESUMO

The endoglin heterozygous (Eng(+/-)) mouse, which serves as a model of hereditary hemorrhagic telangiectasia (HHT), was shown to express reduced levels of endothelial NO synthase (eNOS) with impaired activity. Because of intricate changes in vasomotor function in the Eng(+/-) mice and the potential interactions between the NO- and prostaglandin-producing pathways, we assessed the expression and function of cyclooxygenase (COX) isoforms. A specific upregulation of COX-2 in the vascular endothelium and increased urinary excretion of prostaglandin E(2) were observed in the Eng(+/-) mice. Specific COX-2 inhibition with parecoxib transiently increased arterial pressure in Eng(+/-) but not in Eng(+/+) mice. Transfection of endoglin in L6E9 myoblasts, shown previously to stimulate eNOS expression, led to downregulation of COX-2 with no change in COX-1. In addition, COX-2 promoter activity and protein levels were inversely correlated with endoglin levels, in doxycyclin-inducible endothelial cells. Chronic NO synthesis inhibition with N(omega)-nitro-l-arginine methyl ester induced a marked increase in COX-2 only in the normal Eng(+/+) mice. N(omega)-nitro-l-arginine methyl ester also increased COX-2 expression and promoter activity in doxycyclin-inducible endoglin expressing endothelial cells, but not in control cells. The level of COX-2 expression following transforming growth factor-beta1 treatment was less in endoglin than in mock transfected L6E9 myoblasts and was higher in human endothelial cells silenced for endoglin expression. Our results indicate that endoglin is involved in the regulation of COX-2 activity. Furthermore, reduced endoglin levels and associated impaired NO production may be responsible, at least in part, for augmented COX-2 expression and activity in the Eng(+/-) mice.


Assuntos
Ciclo-Oxigenase 2/genética , Regulação Enzimológica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Animais , Antígenos CD/fisiologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/urina , Endoglina , Endotélio Vascular/metabolismo , Heterozigoto , Humanos , Camundongos , Camundongos Knockout , Óxido Nítrico/biossíntese , Regiões Promotoras Genéticas , Receptores de Superfície Celular/fisiologia , Telangiectasia Hemorrágica Hereditária/etiologia , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta1
5.
Cardiovasc Res ; 69(4): 845-54, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16405930

RESUMO

OBJECTIVE: To determine if angiogenesis is altered in adult Endoglin heterozygous (Eng(+/-)) mice, the animal model for the vascular disorder hereditary hemorrhagic telangiectasia type 1 (HHT1). METHODS: Primary cultures of endothelial cells were generated from Eng(+/-) and Eng(+/+) mice and analyzed for proliferation, migration, and ability to form capillary-like tubes. Endothelial cells derived from umbilical veins of newborns (HUVEC) with an HHT1 genotype were also tested for capillary formation. Two in vivo models of angiogenesis were tested in the Eng(+/-) and Eng(+/+) mice: Matrigel implant-dependent angiogenesis and reperfusion following hindlimb ischemia. RESULTS: The Eng(+/-) endothelial cells displayed significantly reduced proliferation and migration, increased collagen production, and decreased NO synthase expression and vascular endothelial growth factor (VEGF) secretion. They also showed impaired capillary tube formation in vitro, as did the HHT1 HUVEC. These endothelial cell-specific abnormalities were associated with impaired Matrigel-dependent capillary tube formation in vivo and delayed reperfusion following hindlimb ischemia. CONCLUSIONS: Although vascular development is normal in Eng(+/-) mice, angiogenic abnormalities were observed in the adult mice and their isolated endothelial cells. These results suggest that a normal level of endoglin is required for full angiogenic activity.


Assuntos
Células Endoteliais/fisiologia , Endotélio Vascular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Telangiectasia Hemorrágica Hereditária/metabolismo , Animais , Northern Blotting/métodos , Western Blotting/métodos , Movimento Celular , Proliferação de Células , Colágeno/metabolismo , Endoglina , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Heterozigoto , Membro Posterior/irrigação sanguínea , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isquemia/metabolismo , Isquemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
PLoS One ; 12(11): e0188204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145462

RESUMO

Inflammation is associated with every health condition, and is an important component of many pathologies such as cardiovascular diseases. Circulating levels of soluble endoglin have been shown to be higher in the serum of patients with cardiovascular diseases with a significant inflammatory component. The aim of this study was to evaluate the implication of circulating soluble endoglin in the inflammatory response. For this purpose, a transgenic mouse expressing human soluble endoglin (sEng+) was employed, and three different inflammatory approaches were used to mimic inflammatory conditions in different tissues. This study shows that control sEng+ mice have a normal inflammatory state. The lung and kidney injury induced by the inflammatory agents was reduced in sEng+ mice, especially the intra-alveolar and kidney infiltrates, suggesting a possible reduction in inflammation induced by soluble endoglin. To deepen into this possible effect, the leukocyte number in the bronchoalveolar lavage and air pouch lavage was evaluated and a significant reduction of neutrophil infiltration in LPS-treated lungs and ischemic kidneys from sEng+ with respect to WT mice was observed. Additionally, the mechanisms through which soluble endoglin prevents inflammation were studied. We found that in sEng+ animals the increment of proinflammatory cytokines, TNFα, IL1ß and IL6, induced by the inflammatory stimulus was reduced. Soluble endoglin also prevents the augmented adhesion molecules, ICAM, VCAM and E-selectin induced by the inflammatory stimulus. In addition, vascular permeability increased by inflammatory agents was also reduced by soluble endoglin. These results suggest that soluble endoglin modulates inflammatory-related diseases and open new perspectives leading to the development of novel and targeted approaches for the prevention and treatment of cardiovascular diseases.


Assuntos
Endoglina/sangue , Inflamação/sangue , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar , Permeabilidade Capilar , Moléculas de Adesão Celular/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos
7.
Life Sci ; 78(20): 2373-7, 2006 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-16310224

RESUMO

Gentamicin is an aminoglycoside antibiotic that is very effective in treating different gram negative infections, however, one of its main side effects is nephrotoxicity. Gentamicin-induced decreases in glomerular filtration rate could be mediated by mesangial cell contraction. Resveratrol, a natural hydroxystilbene, has been identified to be a potent antioxidant with many biological activities including protection against kidney diseases. As we have previously demonstrated that gentamicin induced a reduction of planar surface area of cultured rat mesangial cells, and that resveratrol has a protective effect on gentamicin-induced nephrotoxicity in vivo, the aim of this study was to investigate the effect of resveratrol on gentamicin-induced mesangial cell contraction. This study demonstrates that the contractile effect of gentamicin on mesangial cells can be prevented by incubation with resveratrol at an optimal dose of 10 microM, as it blunted the gentamicin-induced reduction in planar cell surface area and the number of contracted cells. Besides, the preincubation with 10(-5)M diphenylene iodinium (DPI), an inhibitor of the NADP(H) oxidase, also blunted gentamicin-induced cell contraction. This preventive effect was higher when cells were incubated with both substances together. These results strongly suggest that the protective effect resveratrol against gentamicin-induced reduction in renal function in vivo could be mediated by inhibiting gentamicin-induced mesangial cells contraction.


Assuntos
Antibacterianos/antagonistas & inibidores , Antioxidantes/farmacologia , Gentamicinas/antagonistas & inibidores , Mesângio Glomerular/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Mesângio Glomerular/citologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , NADP/metabolismo , NADPH Oxidases/antagonistas & inibidores , Ratos , Resveratrol
8.
FASEB J ; 18(3): 609-11, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14734648

RESUMO

Endoglin is a membrane glycoprotein that plays an important role in cardiovascular development and angiogenesis. We examined the role of endoglin in the control of vascular tone by measuring nitric oxide (NO)-dependent vasodilation in haploinsufficient mice (Eng+/-) and their Eng+/+ littermates. The vasodilatory effect of acetylcholine, bradykinin, and sodium nitroprusside was assessed in anesthetized mice; in isolated, perfused hindlimbs; and in aortic rings. The substantial hypotensive and vasodilatory response induced by acetylcholine and bradykinin in Eng+/+ was markedly reduced in Eng+/- mice. Both kinds of animals had similar responses to sodium nitroprusside, suggesting that the deficient vasodilatory effect is not due to a NO response impairment. Urinary and plasma concentrations of nitrites, a NO metabolite, were lower in Eng+/- than in Eng+/+ mice. The levels of endothelial nitric oxide synthase (eNOS) in kidneys and femoral arteries were about half in Eng+/- than in Eng+/+ mice and were also reduced in primary cultures of aortic endothelial cells from Eng+/- compared with those from Eng+/+ mice. Furthermore, overexpression or suppression of endoglin in cultured cells induced a marked increase or decrease in the protein levels of eNOS, respectively. Thus, our results in vivo and in vitro demonstrate a relationship between endoglin and NO-dependent vasodilation mediated by the regulation of eNOS expression.


Assuntos
Endotélio Vascular/metabolismo , Óxido Nítrico Sintase/biossíntese , Óxido Nítrico/fisiologia , Molécula 1 de Adesão de Célula Vascular/fisiologia , Vasodilatação/fisiologia , Acetilcolina/farmacologia , Acetilcolina/toxicidade , Animais , Antígenos CD , Pressão Sanguínea/efeitos dos fármacos , Bradicinina/toxicidade , Linhagem Celular , Endoglina , Células Endoteliais/metabolismo , Indução Enzimática/fisiologia , Hipotensão/induzido quimicamente , Rim/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Mioblastos/citologia , Mioblastos/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III , Nitroprussiato/farmacologia , Receptores de Superfície Celular , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/fisiologia , Transfecção , Fator de Crescimento Transformador beta/deficiência , Fator de Crescimento Transformador beta1 , Molécula 1 de Adesão de Célula Vascular/biossíntese , Molécula 1 de Adesão de Célula Vascular/genética , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
9.
Dis Model Mech ; 8(11): 1427-39, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26398936

RESUMO

The activin receptor-like kinase 1 (ALK-1) is a type I cell-surface receptor for the transforming growth factor-ß (TGF-ß) family of proteins. Hypertension is related to TGF-ß1, because increased TGF-ß1 expression is correlated with an elevation in arterial pressure (AP) and TGF-ß expression is upregulated by the renin-angiotensin-aldosterone system. The purpose of this study was to assess the role of ALK-1 in regulation of AP using Alk1 haploinsufficient mice (Alk1(+/-)). We observed that systolic and diastolic AP were significantly higher in Alk1(+/-) than in Alk1(+/+) mice, and all functional and structural cardiac parameters (echocardiography and electrocardiography) were similar in both groups. Alk1(+/-) mice showed alterations in the circadian rhythm of AP, with higher AP than Alk1(+/+) mice during most of the light period. Higher AP in Alk1(+/-) mice is not a result of a reduction in the NO-dependent vasodilator response or of overactivation of the peripheral renin-angiotensin system. However, intracerebroventricular administration of losartan had a hypotensive effect in Alk1(+/-) and not in Alk1(+/+) mice. Alk1(+/-) mice showed a greater hypotensive response to the ß-adrenergic antagonist atenolol and higher concentrations of epinephrine and norepinephrine in plasma than Alk1(+/+) mice. The number of brain cholinergic neurons in the anterior basal forebrain was reduced in Alk1(+/-) mice. Thus, we concluded that the ALK-1 receptor is involved in the control of AP, and the high AP of Alk1(+/-) mice is explained mainly by the sympathetic overactivation shown by these animals, which is probably related to the decreased number of cholinergic neurons.


Assuntos
Receptores de Ativinas Tipo I/deficiência , Pressão Arterial , Heterozigoto , Hipertensão/enzimologia , Receptores de Ativinas Tipo I/genética , Receptores de Activinas Tipo II , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/genética , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Neurônios Colinérgicos/patologia , Ritmo Circadiano , Relação Dose-Resposta a Droga , Predisposição Genética para Doença , Haploinsuficiência , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/patologia , Hipertensão/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Nervoso Simpático/enzimologia , Sistema Nervoso Simpático/fisiopatologia , Fatores de Tempo , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
10.
Antioxid Redox Signal ; 4(6): 893-8, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12573138

RESUMO

Reactive oxygen species (ROS) have been involved in glomerular filtration rate (GFR) reduction observed after gentamicin treatment. trans-Resveratrol (TR), a natural hydroxystilbene, has been identified to be a potent inhibitor of ROS production. The aim of this work has been to study whether TR has a protective effect on gentamicin-induced nephrotoxicity in vivo and the effect of TR on lipid peroxidation and the oxidative stress induced by gentamicin. Animals that received a daily intraperitoneal injection of gentamicin (100 mg/kg body weight) showed lower GFR and renal blood flow (RBF) and higher urinary excretion of N-acetyl-beta-D-glucosaminidase (NAG) than control rats. Rats receiving TR together with gentamicin showed higher GFR and RBF and lower NAG urinary excretion than rats receiving gentamicin alone. Moreover, renal lipid peroxidation increased in rats receiving gentamicin alone, and this increase was prevented by the administration of TR. The concentration in plasma of antioxidants was higher in the group that received TR with gentamicin than in the gentamicin and control groups. The activities of lactate dehydrogenase and alkaline phosphatase were higher in rats treated with gentamicin than in control rats and were reduced by the treatment with TR. This study demonstrates an improvement in renal function in response to the administration of TR in gentamicin-induced nephrotoxicity. At least a part of this effect of TR could be based on its antioxidant activity.


Assuntos
Antibacterianos/efeitos adversos , Antioxidantes/farmacologia , Gentamicinas/efeitos adversos , Nefropatias/prevenção & controle , Estilbenos/farmacologia , Acetilglucosaminidase/urina , Fosfatase Alcalina/sangue , Animais , Eletrólitos/urina , Gentamicinas/antagonistas & inibidores , Taxa de Filtração Glomerular/efeitos dos fármacos , Hidroliases/sangue , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Circulação Renal/efeitos dos fármacos , Resveratrol
11.
Biomed Res Int ; 2014: 124902, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101263

RESUMO

Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis.


Assuntos
Angiotensina II/administração & dosagem , Fibrose/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Angiotensina II/metabolismo , Animais , Atorvastatina , Modelos Animais de Doenças , Fibrose/tratamento farmacológico , Fibrose/fisiopatologia , Ácidos Heptanoicos/administração & dosagem , Humanos , Nefropatias/tratamento farmacológico , Nefropatias/fisiopatologia , Camundongos , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Pirróis/administração & dosagem , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Obstrução Ureteral/dietoterapia , Obstrução Ureteral/metabolismo , Obstrução Ureteral/fisiopatologia
12.
J Invest Dermatol ; 134(1): 247-255, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23765132

RESUMO

Endoglin (Eng) is a transmembrane glycoprotein that is mainly expressed in endothelial cells, but it is also present in the epidermis and skin appendages. To address the role of Eng in cutaneous wound healing, we compared the kinetics of reepithelialization in Eng heterozygous null (Eng(+/-)) mice and their normal littermates (Eng(+/+)) following skin wounds. The wound area was significantly larger in Eng(+/-) than in Eng(+/+) mice from 2 to 8 days after injury; overall wound closure was delayed by 1 to 2 days. In Eng(+/-) mice, keratinocytes at the wound edges exhibited impaired proliferation but were more migratory, as shown by their elongated morphology and increased keratin 17 expression. Inhibition of nitric oxide (NO) synthesis delayed healing in Eng(+/+) but not in Eng(+/-) mice. Administration of the NO donor LA-803 accelerated wound closure in Eng(+/-) mice, with no effect on normal littermates. The acute stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA) enhanced Eng expression in mouse epidermal keratinocytes in vivo and in vitro associated with hyperproliferation. Similarly, the skin of Eng(+/-) mice failed to mount a hyperplastic response to acute stimulation with TPA. These results demonstrate an important involvement of Eng in wound healing that is associated with NO bioavailability.


Assuntos
Epiderme/lesões , Peptídeos e Proteínas de Sinalização Intracelular/genética , Óxido Nítrico/metabolismo , Cicatrização/fisiologia , Fatores Etários , Animais , Carcinógenos/farmacologia , Proliferação de Células , Endoglina , Epiderme/metabolismo , Epiderme/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Heterozigoto , Hiperplasia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Acetato de Tetradecanoilforbol/farmacologia
13.
PLoS One ; 9(10): e110365, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25313562

RESUMO

Transforming growth factor-ß (TGF-ß) plays a pivotal role in renal fibrosis. Endoglin, a 180 KDa membrane glycoprotein, is a TGF-ß co-receptor overexpressed in several models of chronic kidney disease, but its function in renal fibrosis remains uncertain. Two membrane isoforms generated by alternative splicing have been described, L-Endoglin (long) and S-Endoglin (short) that differ from each other in their cytoplasmic tails, being L-Endoglin the most abundant isoform. The aim of this study was to assess the effect of L-Endoglin overexpression in renal tubulo-interstitial fibrosis. For this purpose, a transgenic mouse which ubiquitously overexpresses human L-Endoglin (L-ENG+) was generated and unilateral ureteral obstruction (UUO) was performed in L-ENG+ mice and their wild type (WT) littermates. Obstructed kidneys from L-ENG+ mice showed higher amounts of type I collagen and fibronectin but similar levels of α-smooth muscle actin (α-SMA) than obstructed kidneys from WT mice. Smad1 and Smad3 phosphorylation were significantly higher in obstructed kidneys from L-ENG+ than in WT mice. Our results suggest that the higher increase of renal fibrosis observed in L-ENG+ mice is not due to a major abundance of myofibroblasts, as similar levels of α-SMA were observed in both L-ENG+ and WT mice, but to the higher collagen and fibronectin synthesis by these fibroblasts. Furthermore, in vivo L-Endoglin overexpression potentiates Smad1 and Smad3 pathways and this effect is associated with higher renal fibrosis development.


Assuntos
Antígenos CD/genética , Expressão Gênica , Nefropatias/etiologia , Nefropatias/patologia , Receptores de Superfície Celular/genética , Obstrução Ureteral/complicações , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Endoglina , Matriz Extracelular/metabolismo , Fibronectinas , Fibrose , Humanos , Nefropatias/metabolismo , Camundongos , Camundongos Transgênicos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
14.
J Inflamm (Lond) ; 7: 19, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20412564

RESUMO

Obstructive nephropathy is characterized by an inflammatory state in the kidney, that is promoted by cytokines and growth factors produced by damaged tubular cells, infiltrated macrophages and accumulated myofibroblasts. This inflammatory state contributes to tubular atrophy and interstitial fibrosis characteristic of obstructive nephropathy. Accumulation of leukocytes, especially macrophages and T lymphocytes, in the renal interstitium is strongly associated to the progression of renal injury. Proinflammatory cytokines, NF-kappaB activation, adhesion molecules, chemokines, growth factors, NO and oxidative stress contribute in different ways to progressive renal damage induced by obstructive nephropathy, as they induce leukocytes recruitment, tubular cell apoptosis and interstitial fibrosis. Increased angiotensin II production, increased oxidative stress and high levels of proinflammatory cytokines contribute to NF-kappaB activation which in turn induce the expression of adhesion molecules and chemokines responsible for leukocyte recruitment and iNOS and cytokines overexpression, which aggravates the inflammatory response in the damaged kidney. In this manuscript we revise the different events and regulatory mechanisms involved in inflammation associated to obstructive nephropathy.

15.
Toxicol Sci ; 118(2): 324-47, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20554698

RESUMO

As in the case of other heavy metals, a considerable body of evidence suggests that overexposure to uranium may cause pathological alterations to the kidneys in both humans and animals. In the present work, our aim was to analyze the available data from a critical perspective that should provide a view of the real danger of the nephrotoxicity of this metal for human beings. A further aim was to elaborate a comparative compilation of the renal pathophysiological data obtained in humans and experimental animals with a view to gaining more insight into our knowledge of the mechanisms of action and renal damage. Finally, we address the existing perspectives for the improvement of diagnostic methods and the treatment of intoxications by uranium, performing an integrated analysis of all these aspects.


Assuntos
Poluentes Ambientais/toxicidade , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Compostos de Urânio/toxicidade , Doença Aguda , Animais , Modelos Animais de Doenças , Feminino , Humanos , Rim/metabolismo , Rim/fisiopatologia , Nefropatias/fisiopatologia , Nefropatias/terapia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Testes de Toxicidade
16.
Kidney Blood Press Res ; 30(2): 67-80, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17268203

RESUMO

Female gender is associated with better renal function and resistance to renal injury, suggesting that an oestrogen-based effect or increased androgenic effects are responsible. Studies in rodents have confirmed a biological basis for this, based on the differential effects of androgens and oestrogens on the normal and diseased kidney. Many researchers in the field believe that the pre-menopausal levels of oestrogen are key to the protection observed in females. The key pressor effects of the renin-angiotensin (RA) system are due to both direct vasoconstrictory properties and alterations in renal control of extracellular fluid volume. Additionally, the RA has been shown to promote diverse aspects of renal injury. RA activity is positively modulated by androgens and antagonized by oestrogens. Nitric oxide (NO) is a potent vasorelaxant with a key role in renal control of extracellular fluid homeostasis. NO can variously have both protective and deleterious effects on renal injury. Endogenous oestrogen has an anti-hypertensive effect as well as protective effects against cell and organ damage, many of which are mediated via increases in NO generation. We examine how the RA- and NO-generating systems may underpin key aspects of gender differences in normal renal function and renal disease.


Assuntos
Nefropatias/fisiopatologia , Rim/fisiologia , Óxido Nítrico/fisiologia , Sistema Renina-Angiotensina/fisiologia , Caracteres Sexuais , Androgênios/fisiologia , Progressão da Doença , Estrogênios/fisiologia , Feminino , Homeostase/fisiologia , Humanos , Masculino , Vasodilatação/fisiologia
17.
J Cell Physiol ; 210(2): 456-68, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17058229

RESUMO

The endothelial nitric oxide synthase (eNOS) is a critical regulator of cardiovascular homeostasis, whose dysregulation leads to different vascular pathologies. Endoglin is a component of the transforming growth factor beta (TGF-beta) receptor complex present in endothelial cells that is involved in angiogenesis, cardiovascular development, and vascular homeostasis. Haploinsufficient expression of endoglin has been shown to downregulate endothelium-derived nitric oxide in endoglin(+/-) (Eng(+/-)) mice and cultured endothelial cells. Here, we find that TGF-beta1 leads to an increased vasodilatation in Eng(+/+) mice that is severely impaired in Eng(+/-) mice, suggesting the involvement of endoglin in the TGF-beta regulated vascular homeostasis. The endoglin-dependent induction of eNOS occurs at the transcriptional level and is mediated by the type I TGF-beta receptor ALK5 and its downstream substrate Smad2. In addition, Smad2-specific signaling is upregulated in endoglin-induced endothelial cells, whereas it is downregulated upon endoglin gene suppression with small interference RNA (siRNA). The endoglin-dependent upregulation of Smad2 was confirmed using eNOS and pARE promoters, whose activities are known to be Smad2 dependent, as well as with the interference of Smad2 with siRNA, Smurf2, or a dominant negative form of Smad2. Furthermore, increased expression of endoglin in endoglin-inducible endothelial cells or in transfectants resulted in increased levels of Smad2 protein without affecting the levels of Smad2 mRNA. The increased levels of Smad2 appear to be due to a decreased ubiquitination and proteasome-dependent degradation leading to stabilization of Smad2. These results suggest that endoglin enhances Smad2 protein levels potentiating TGF-beta signaling, and leading to an increased eNOS expression in endothelial cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/fisiologia , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/genética , Animais , Células COS , Bovinos , Chlorocebus aethiops , Endoglina , Células Endoteliais/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Homeostase/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Óxido Nítrico/biossíntese , Interferência de RNA , RNA Mensageiro/metabolismo , Ratos , Proteína Smad2/genética , Vasodilatação/genética
18.
Toxicol Appl Pharmacol ; 210(1-2): 128-35, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16226777

RESUMO

Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd+quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity.


Assuntos
Compostos de Cádmio/toxicidade , Ciclo-Oxigenase 2/biossíntese , Nefropatias/induzido quimicamente , Metalotioneína/biossíntese , Óxido Nítrico Sintase/biossíntese , Substâncias Protetoras/uso terapêutico , Quercetina/uso terapêutico , Animais , Doença Crônica , Modelos Animais de Doenças , Indução Enzimática , Nefropatias/enzimologia , Nefropatias/metabolismo , Nefropatias/prevenção & controle , Masculino , Ratos , Ratos Wistar
19.
Nephrol Dial Transplant ; 21(8): 2106-19, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16751653

RESUMO

BACKGROUND: Renal ischaemia-reperfusion (I-R) can cause acute tubular necrosis and chronic renal deterioration. Endoglin, an accessory receptor for Transforming Growth Factor-beta1 (TGF-beta1), is expressed on activated endothelium during macrophage maturation and implicated in the control of fibrosis, angiogenesis and inflammation. METHODS: Endoglin expression was monitored over 14 days after renal I-R in rats. As endoglin-null mice are not viable, the role of endoglin in I-R was studied by comparing renal I-R injury in haploinsufficient mice (Eng(+/-)) and their wild-type littermates (Eng(+/+)). Renal function, morphology and molecular markers of acute renal injury and inflammation were compared. RESULTS: Endoglin mRNA up-regulation in the post-ischaemic kidneys of rats occurred at 12 h after I-R; endoglin protein levels were elevated throughout the study period. Expression was initially localized to the vascular endothelium, then extended to fibrotic and inflamed areas of the interstitium. Two days after I-R, plasma creatinine elevation and acute tubular necrosis were less marked in Eng(+/-) than in Eng(+/+) mice. Significant up-regulation of endoglin protein was found only in the post-ischaemic kidneys of Eng(+/+) mice and coincided with an increased mRNA expression of the TGF-beta1 and collagen IV (alpha1) chain genes. Significant increases in vascular cell adhesion molecule-1 (VCAM-1) and inducible nitric oxide synthase (iNOS) expression, nitrosative stress, myeloperoxidase activity and CD68 staining for macrophages were evident in post-ischaemic kidneys of Eng(+/+), but not Eng(+/-) mice, suggesting that impaired endothelial activation and macrophage maturation may account for the reduced injury in post-ischaemic kidneys of Eng(+/-) mice. CONCLUSIONS: Endoglin is up-regulated in the post-ischaemic kidney and endoglin-haploinsufficient mice are protected from renal I-R injury. Endoglin may play a primary role in promoting inflammatory responses following renal I-R.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Necrose Tubular Aguda/fisiopatologia , Rim/irrigação sanguínea , Traumatismo por Reperfusão/fisiopatologia , Animais , Antígenos CD/biossíntese , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/biossíntese , Antígenos de Diferenciação Mielomonocítica/genética , Colágeno Tipo IV/biossíntese , Colágeno Tipo IV/genética , Creatinina/sangue , Endoglina , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Indução Enzimática , Fibrose , Regulação da Expressão Gênica , Heterozigoto , Inflamação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/metabolismo , Rim/patologia , Necrose Tubular Aguda/etiologia , Macrófagos/enzimologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Monócitos/enzimologia , Monócitos/patologia , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Peroxidase/análise , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Traumatismo por Reperfusão/complicações , Fator de Crescimento Transformador beta1/biossíntese , Fator de Crescimento Transformador beta1/genética , Molécula 1 de Adesão de Célula Vascular/biossíntese , Molécula 1 de Adesão de Célula Vascular/genética
20.
Kidney Blood Press Res ; 28(1): 32-40, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15475654

RESUMO

BACKGROUND: Endoglin is a membrane glycoprotein that regulates TGF-beta1 signaling. Previous studies have revealed that endoglin is upregulated in several models of experimental fibrosis, and that endoglin expression can counteract the fibrogenic effects of TGF-beta1. As treatment with angiotensin converting enzyme (ACE) inhibitors reduces renal fibrosis by mechanisms that are, in part, not dependent on angiotensin II blockade, we have assessed the hypothesis that this effect could be mediated by endoglin upregulation. METHODS: We have used the 5/6-nephrectomy renal mass reduction (RMR) model of renal fibrosis in rats treated (RMR+T) or not treated with the ACE inhibitor trandolapril (0.7 mg/kg/day). One, 3 and 5 months after RMR, mean arterial pressure and renal function were measured. In addition, renal fibrosis was evaluated quantitatively and endoglin, TGF-beta1, collagen type I and collagen type IV expression was assessed by Northern blot and immunohistochemistry. RESULTS: RMR induced a progressive increase in mean arterial pressure, urinary protein excretion and glomerular and tubulointerstitial fibrosis, which is accompanied by an increased expression of TGF-beta1, endoglin and collagen types I and IV. Trandolapril treatment reduced systemic blood pressure and lessened proteinuria after RMR, as well as expression of TGF-beta1, endoglin and collagens. CONCLUSION: The present study demonstrates an increased TGF-beta1, endoglin, collagen type I and collagen type IV expression in rats with severe hypertension and renal damage. The effect of trandolapril to decrease renal fibrosis seems to be based in a reduced TGF-beta1 expression but not in an increased expression of endoglin.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Nefropatias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Animais , Regulação para Baixo/efeitos dos fármacos , Endoglina , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/patologia , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Masculino , Ratos , Ratos Wistar , Fatores de Tempo , Fator de Crescimento Transformador beta/biossíntese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa