Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cancer Sci ; 113(7): 2214-2223, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35534984

RESUMO

Numerous epithelial-mesenchymal transition (EMT) characteristics have now been demonstrated to participate in tumor development. Indeed, EMT is involved in invasion, acquisition of stem cell properties, and therapy-associated resistance of cancer cells. Together, these mechanisms offer advantages in adapting to changes in the tumor microenvironment. However, recent findings have shown that EMT-associated transcription factors (EMT-TFs) may also be involved in DNA repair. A better understanding of the coordination between the DNA repair pathways and the role played by some EMT-TFs in the DNA damage response (DDR) should pave the way for new treatments targeting tumor-specific molecular vulnerabilities, which result in selective destruction of cancer cells. Here we review recent advances, providing novel insights into the role of EMT in the DDR and repair pathways, with a particular focus on the influence of EMT on cellular sensitivity to damage, as well as the implications of these relationships for improving the efficacy of cancer treatments.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Dano ao DNA/genética , Reparo do DNA/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fatores de Transcrição/genética , Microambiente Tumoral/genética
2.
Mol Cell ; 49(6): 1049-59, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23395000

RESUMO

As solid tumors expand, oxygen and nutrients become limiting owing to inadequate vascularization and diffusion. How malignant cells cope with this potentially lethal metabolic stress remains poorly understood. We found that glucose shortage associated with malignant progression triggers apoptosis through the endoplasmic reticulum (ER) unfolded protein response (UPR). ER stress is in part caused by reduced glucose flux through the hexosamine pathway. Deletion of the proapoptotic UPR effector CHOP in a mouse model of K-ras(G12V)-induced lung cancer increases tumor incidence, strongly supporting the notion that ER stress serves as a barrier to malignancy. Overcoming this barrier requires the selective attenuation of the PERK-CHOP arm of the UPR by the molecular chaperone p58(IPK). Furthermore, p58(IPK)-mediated adaptive response enables cells to benefit from the protective features of chronic UPR. Altogether, these results show that ER stress activation and p58(IPK) expression control the fate of malignant cells facing glucose shortage.


Assuntos
Apoptose , Transformação Celular Neoplásica/metabolismo , Glucose/deficiência , Chaperonas Moleculares/fisiologia , Fator de Transcrição CHOP/metabolismo , eIF-2 Quinase/metabolismo , Acetilgalactosamina/metabolismo , Animais , Hipóxia Celular , Linhagem Celular , Proliferação de Células , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Transportador de Glucose Tipo 1/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Ácido Láctico/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-ret/metabolismo , Ratos , Resposta a Proteínas não Dobradas
3.
Sensors (Basel) ; 21(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066263

RESUMO

Multispectral photoacoustic imaging is a powerful noninvasive medical imaging technique that provides access to functional information. In this study, a set of methods is proposed and validated, with experimental multispectral photoacoustic images used to estimate the concentration of chromophores. The unmixing techniques used in this paper consist of two steps: (1) automatic extraction of the reference spectrum of each pure chromophore; and (2) abundance calculation of each pure chromophore from the estimated reference spectra. The compared strategies bring positivity and sum-to-one constraints, from the hyperspectral remote sensing field to multispectral photoacoustic, to evaluate chromophore concentration. Particularly, the study extracts the endmembers and compares the algorithms from the hyperspectral remote sensing domain and a dedicated algorithm for segmentation of multispectral photoacoustic data to this end. First, these strategies are tested with dilution and mixing of chromophores on colored 4% agar phantom data. Then, some preliminary in vivo experiments are performed. These consist of estimations of the oxygen saturation rate (sO2) in mouse tumors. This article proposes then a proof-of-concept of the interest to bring hyperspectral remote sensing algorithms to multispectral photoacoustic imaging for the estimation of chromophore concentration.


Assuntos
Técnicas Fotoacústicas , Algoritmos , Animais , Diagnóstico por Imagem , Camundongos , Imagens de Fantasmas , Análise Espectral
4.
Mol Cell ; 46(2): 200-11, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22464733

RESUMO

Caspase 1 is part of the inflammasome, which is assembled upon pathogen recognition, while caspases 3 and/or 7 are mediators of apoptotic and nonapoptotic functions. PARP1 cleavage is a hallmark of apoptosis yet not essential, suggesting it has another physiological role. Here we show that after LPS stimulation, caspase 7 is activated by caspase 1, translocates to the nucleus, and cleaves PARP1 at the promoters of a subset of NF-κB target genes negatively regulated by PARP1. Mutating the PARP1 cleavage site D214 renders PARP1 uncleavable and inhibits PARP1 release from chromatin and chromatin decondensation, thereby restraining the expression of cleavage-dependent NF-κB target genes. These findings propose an apoptosis-independent regulatory role for caspase 7-mediated PARP1 cleavage in proinflammatory gene expression and provide insight into inflammasome signaling.


Assuntos
Caspase 7/fisiologia , NF-kappa B/metabolismo , Poli(ADP-Ribose) Polimerases/fisiologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Cromatina/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Camundongos , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Transdução de Sinais
5.
Curr Opin Oncol ; 29(1): 35-40, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27875342

RESUMO

PURPOSE OF REVIEW: Inflammasomes are major actors of the innate immune system, through their regulation of inflammatory caspases and maturation of IL-1ß and IL-18. These multiprotein complexes have been shown to play major roles in inflammatory and metabolic diseases and have more recently been implicated in tumor development and dissemination. In this review, we address these recent findings, focusing particularly on colorectal cancer (CRC) initiation and tumor dissemination. RECENT FINDINGS: Based mostly on loss-of-function experiments in mouse models, paradoxical results were obtained as both protumoral and antitumoral activities were reported. Moreover, several studies report major inflammasome-independent functions for some of these innate receptor proteins such as absent in melanoma 2, nod-like receptor family pyrin containing 3 (NLRP3) or nod-like receptor family CARD containing 4 (NLRC4), functions exerted in epithelial cells as well as in immune cells. SUMMARY: The current review summarizes recent findings on the implication of inflammasomes and of absent in melanoma 2, NLRC4 and NLRP3 inflammasome-independent functions in cancer development and dissemination. Although contradictory in certain aspects, these studies highlight a lack of understanding of their mechanistic functions and regulations in cancer and the need for further investigations.


Assuntos
Inflamassomos/imunologia , Neoplasias/imunologia , Animais , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Humanos , Neoplasias/patologia
6.
Proc Natl Acad Sci U S A ; 111(48): 17254-9, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404286

RESUMO

Inflammasomes are caspase-1-activating multiprotein complexes. The mouse nucleotide-binding domain and leucine rich repeat pyrin containing 1b (NLRP1b) inflammasome was identified as the sensor of Bacillus anthracis lethal toxin (LT) in mouse macrophages from sensitive strains such as BALB/c. Upon exposure to LT, the NLRP1b inflammasome activates caspase-1 to produce mature IL-1ß and induce pyroptosis. Both processes are believed to depend on autoproteolysed caspase-1. In contrast to human NLRP1, mouse NLRP1b lacks an N-terminal pyrin domain (PYD), indicating that the assembly of the NLRP1b inflammasome does not require the adaptor apoptosis-associated speck-like protein containing a CARD (ASC). LT-induced NLRP1b inflammasome activation was shown to be impaired upon inhibition of potassium efflux, which is known to play a major role in NLRP3 inflammasome formation and ASC dimerization. We investigated whether NLRP3 and/or ASC were required for caspase-1 activation upon LT stimulation in the BALB/c background. The NLRP1b inflammasome activation was assessed in both macrophages and dendritic cells lacking either ASC or NLRP3. Upon LT treatment, the absence of NLRP3 did not alter the NLRP1b inflammasome activity. Surprisingly, the absence of ASC resulted in IL-1ß cleavage and pyroptosis, despite the absence of caspase-1 autoprocessing activity. By reconstituting caspase-1/caspase-11(-/-) cells with a noncleavable or catalytically inactive mutant version of caspase-1, we directly demonstrated that noncleavable caspase-1 is fully active in response to the NLRP1b activator LT, whereas it is nonfunctional in response to the NLRP3 activator nigericin. Taken together, these results establish variable requirements for caspase-1 cleavage depending on the pathogen and the responding NLR.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Inflamassomos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Western Blotting , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/genética , Caspase 1/genética , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Inflamassomos/genética , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Modelos Biológicos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nigericina/farmacologia , Proteólise
8.
Nature ; 452(7183): 103-7, 2008 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-18288107

RESUMO

The innate immune system recognizes nucleic acids during infection and tissue damage. Whereas viral RNA is detected by endosomal toll-like receptors (TLR3, TLR7, TLR8) and cytoplasmic RIG-I and MDA5, endosomal TLR9 and cytoplasmic DAI bind DNA, resulting in the activation of nuclear factor-kappaB and interferon regulatory factor transcription factors. However, viruses also trigger pro-inflammatory responses, which remain poorly defined. Here we show that internalized adenoviral DNA induces maturation of pro-interleukin-1beta in macrophages, which is dependent on NALP3 and ASC, components of the innate cytosolic molecular complex termed the inflammasome. Correspondingly, NALP3- and ASC-deficient mice display reduced innate inflammatory responses to adenovirus particles. Inflammasome activation also occurs as a result of transfected cytosolic bacterial, viral and mammalian (host) DNA, but in this case sensing is dependent on ASC but not NALP3. The DNA-sensing pro-inflammatory pathway functions independently of TLRs and interferon regulatory factors. Thus, in addition to viral and bacterial components or danger signals in general, inflammasomes sense potentially dangerous cytoplasmic DNA, strengthening their central role in innate immunity.


Assuntos
Proteínas de Transporte/imunologia , Proteínas do Citoesqueleto/imunologia , Citosol/metabolismo , Citosol/virologia , DNA/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Adenoviridae/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/genética , Linhagem Celular , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Citosol/microbiologia , DNA Viral/imunologia , Humanos , Inflamação/virologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Processamento de Proteína Pós-Traducional
9.
FEBS J ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273453

RESUMO

Eukaryotic cells encounter diverse threats jeopardizing their integrity, prompting the development of defense mechanisms against these stressors. Among these mechanisms, inflammasomes are well-known for their roles in coordinating the inflammatory response against infections. Extensive research has unveiled their multifaceted involvement in cellular processes beyond inflammation. Recent studies emphasize the intricate relationship between the inflammasome and the DNA damage response (DDR). They highlight how the DDR participates in inflammasome activation and the reciprocal impact of inflammasome on DDR and genome integrity preservation. Moreover, novel functions of inflammasome sensors in DDR pathways have emerged, broadening our understanding of their roles. Finally, this review delves into identifying common signals that drive the activation of inflammasome sensors alongside activation cues for the DNA damage response, offering potential insights into shared regulatory pathways between these critical cellular processes.

10.
Sci Signal ; 17(833): eabn8003, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652763

RESUMO

Inflammasomes are multiprotein platforms that control caspase-1 activation, which process the inactive precursor forms of the inflammatory cytokines IL-1ß and IL-18, leading to an inflammatory type of programmed cell death called pyroptosis. Studying inflammasome-driven processes, such as pyroptosis-induced cell swelling, under controlled conditions remains challenging because the signals that activate pyroptosis also stimulate other signaling pathways. We designed an optogenetic approach using a photo-oligomerizable inflammasome core adapter protein, apoptosis-associated speck-like containing a caspase recruitment domain (ASC), to temporally and quantitatively manipulate inflammasome activation. We demonstrated that inducing the light-sensitive oligomerization of ASC was sufficient to recapitulate the classical features of inflammasomes within minutes. This system showed that there were two phases of cell swelling during pyroptosis. This approach offers avenues for biophysical investigations into the intricate nature of cellular volume control and plasma membrane rupture during cell death.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Inflamassomos , Optogenética , Piroptose , Inflamassomos/metabolismo , Optogenética/métodos , Animais , Humanos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Camundongos , Caspase 1/metabolismo , Caspase 1/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética
11.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36746533

RESUMO

NLRP3 is a pattern recognition receptor with a well-documented role in inducing inflammasome assembly in response to cellular stress. Deregulation of its activity leads to many inflammatory disorders including gouty arthritis, Alzheimer disease, and cancer. Whereas its role in the context of cancer has been mostly explored in the immune compartment, whether NLRP3 exerts functions unrelated to immunity in cancer development remains unexplored. Here, we demonstrate that NLRP3 interacts with the ATM kinase to control the activation of the DNA damage response, independently of its inflammasome activity. NLRP3 down-regulation in both broncho- and mammary human epithelial cells significantly impairs ATM pathway activation, leading to lower p53 activation, and provides cells with the ability to resist apoptosis induced by acute genotoxic stress. Interestingly, NLRP3 expression is down-regulated in non-small cell lung cancers and breast cancers, and its expression positively correlates with patient overall survival. Our findings identify a novel non-immune function for NLRP3 in maintaining genome integrity and strengthen the concept of a functional link between innate immunity and DNA damage sensing pathways to maintain cell integrity.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Imunidade Inata , Dano ao DNA , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
12.
PLoS Pathog ; 6(11): e1001191, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21085613

RESUMO

Pneumolysin (PLY) is a key Streptococcus pneumoniae virulence factor and potential candidate for inclusion in pneumococcal subunit vaccines. Dendritic cells (DC) play a key role in the initiation and instruction of adaptive immunity, but the effects of PLY on DC have not been widely investigated. Endotoxin-free PLY enhanced costimulatory molecule expression on DC but did not induce cytokine secretion. These effects have functional significance as adoptive transfer of DC exposed to PLY and antigen resulted in stronger antigen-specific T cell proliferation than transfer of DC exposed to antigen alone. PLY synergized with TLR agonists to enhance secretion of the proinflammatory cytokines IL-12, IL-23, IL-6, IL-1ß, IL-1α and TNF-α by DC and enhanced cytokines including IL-17A and IFN-γ by splenocytes. PLY-induced DC maturation and cytokine secretion by DC and splenocytes was TLR4-independent. Both IL-17A and IFN-γ are required for protective immunity to pneumococcal infection and intranasal infection of mice with PLY-deficient pneumococci induced significantly less IFN-γ and IL-17A in the lungs compared to infection with wild-type bacteria. IL-1ß plays a key role in promoting IL-17A and was previously shown to mediate protection against pneumococcal infection. The enhancement of IL-1ß secretion by whole live S. pneumoniae and by PLY in DC required NLRP3, identifying PLY as a novel NLRP3 inflammasome activator. Furthermore, NLRP3 was required for protective immunity against respiratory infection with S. pneumoniae. These results add significantly to our understanding of the interactions between PLY and the immune system.


Assuntos
Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/patogenicidade , Estreptolisinas/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Proteínas de Bactérias/farmacologia , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/microbiologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/microbiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infecções Pneumocócicas/metabolismo , Infecções Pneumocócicas/microbiologia , Baço/imunologia , Baço/metabolismo , Baço/microbiologia , Streptococcus pneumoniae/imunologia
13.
Nature ; 440(7081): 237-41, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16407889

RESUMO

Development of the acute and chronic inflammatory responses known as gout and pseudogout are associated with the deposition of monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) crystals, respectively, in joints and periarticular tissues. Although MSU crystals were first identified as the aetiological agent of gout in the eighteenth century and more recently as a 'danger signal' released from dying cells, little is known about the molecular mechanisms underlying MSU- or CPPD-induced inflammation. Here we show that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1beta and IL-18. Macrophages from mice deficient in various components of the inflammasome such as caspase-1, ASC and NALP3 are defective in crystal-induced IL-1beta activation. Moreover, an impaired neutrophil influx is found in an in vivo model of crystal-induced peritonitis in inflammasome-deficient mice or mice deficient in the IL-1beta receptor (IL-1R). These findings provide insight into the molecular processes underlying the inflammatory conditions of gout and pseudogout, and further support a pivotal role of the inflammasome in several autoinflammatory diseases.


Assuntos
Proteínas de Transporte/metabolismo , Gota/metabolismo , Inflamação/metabolismo , Ácido Úrico/metabolismo , Animais , Pirofosfato de Cálcio/metabolismo , Pirofosfato de Cálcio/farmacologia , Caspase 1/metabolismo , Linhagem Celular , Células Cultivadas , Condrocalcinose/induzido quimicamente , Condrocalcinose/metabolismo , Condrocalcinose/patologia , Colchicina/farmacologia , Modelos Animais de Doenças , Gota/induzido quimicamente , Gota/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Interleucina-1/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Peritonite/induzido quimicamente , Peritonite/metabolismo , Peritonite/patologia , Receptores de Interleucina-1/deficiência , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Ácido Úrico/química , Ácido Úrico/farmacologia
14.
Proc Natl Acad Sci U S A ; 106(3): 870-5, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19139407

RESUMO

Many currently used and candidate vaccine adjuvants are particulate in nature, but their mechanism of action is not well understood. Here, we show that particulate adjuvants, including biodegradable poly(lactide-co-glycolide) (PLG) and polystyrene microparticles, dramatically enhance secretion of interleukin-1beta (IL-1beta) by dendritic cells (DCs). The ability of particulates to promote IL-1beta secretion and caspase 1 activation required particle uptake by DCs and NALP3. Uptake of microparticles induced lysosomal damage, whereas particle-mediated enhancement of IL-1beta secretion required phagosomal acidification and the lysosomal cysteine protease cathepsin B, suggesting a role for lysosomal damage in inflammasome activation. Although the presence of a Toll-like receptor (TLR) agonist was required to induce IL-1beta production in vitro, injection of the adjuvants in the absence of TLR agonists induced IL-1beta production at the injection site, indicating that endogenous factors can synergize with particulates to promote inflammasome activation. The enhancement of antigen-specific antibody production by PLG microparticles was independent of NALP3. However, the ability of PLG microparticles to promote antigen-specific IL-6 production by T cells and the recruitment and activation of a population of CD11b(+)Gr1(-) cells required NALP3. Our data demonstrate that uptake of microparticulate adjuvants by DCs activates the NALP3 inflammasome, and this contributes to their enhancing effects on innate and antigen-specific cellular immunity.


Assuntos
Adjuvantes Imunológicos/farmacologia , Proteínas de Transporte/fisiologia , Células Dendríticas/metabolismo , Vacinas/administração & dosagem , Adjuvantes Imunológicos/farmacocinética , Animais , Formação de Anticorpos , Caspase 1/fisiologia , Catepsina B/fisiologia , Movimento Celular , Células Cultivadas , Feminino , Interleucina-1beta/biossíntese , Ácido Láctico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Poliestirenos/farmacologia , Receptores Toll-Like/fisiologia
15.
Antioxid Redox Signal ; 37(4-6): 349-369, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35166124

RESUMO

Aims: Although prebiotics, probiotics, and fecal transplantation can alter the sensation of hunger and/or feeding behavior, the role of the constitutive gut microbiota in the short-term regulation of food intake during normal physiology is still unclear. Results: An antibiotic-induced microbiota depletion study was designed to compare feeding behavior in conventional and microbiota-depleted mice. Tissues were sampled to characterize the time profile of microbiota-derived signals in mice during consumption of either standard or high-fat food for 1 h. Pharmacological and genetic tools were used to evaluate the contribution of postprandial endotoxemia and inflammatory responses in the short-term regulation of food intake. We observed constitutive microbial and macronutrient-dependent control of food intake at the time scale of a meal; that is, within 1 h of food introduction. Specifically, microbiota depletion increased food intake, and the microbiota-derived anorectic effect became significant during the consumption of high-fat but not standard food. This anorectic effect correlated with a specific postprandial microbial metabolic signature, and did not require postprandial endotoxemia or an NOD-, LRR-, and Pyrin domain-containing protein 3-inflammasome-mediated inflammatory response. Innovation and Conclusion: These findings show that the gut microbiota controls host appetite at the time scale of a meal under normal physiology. Interestingly, a microbiota-derived anorectic effect develops specifically with a high-fat meal, indicating that gut microbiota activity is involved in the satietogenic properties of foods. Antioxid. Redox Signal. 37, 349-369.


Assuntos
Depressores do Apetite , Endotoxemia , Microbiota , Animais , Ingestão de Alimentos , Peptídeo 1 Semelhante ao Glucagon , Inflamação , Camundongos , Camundongos Endogâmicos NOD , Estresse Oxidativo
16.
J Biol Chem ; 285(14): 10508-18, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20097760

RESUMO

Many Gram-negative bacteria possess a type III secretion system (TTSS( paragraph sign)) that can activate the NLRC4 inflammasome, process caspase-1 and lead to secretion of mature IL-1beta. This is dependent on the presence of intracellular flagellin. Previous reports have suggested that this activation is independent of extracellular K(+) and not accompanied by leakage of K(+) from the cell, in contrast to activation of the NLRP3 inflammasome. However, non-flagellated strains of Pseudomonas aeruginosa are able to activate NLRC4, suggesting that formation of a pore in the cell membrane by the TTSS apparatus may be sufficient for inflammasome activation. Thus, we set out to determine if extracellular K(+) influenced P. aeruginosa inflammasome activation. We found that raising extracellular K(+) prevented TTSS NLRC4 activation by the non-flagellated P. aeruginosa strain PA103DeltaUDeltaT at concentrations above 90 mm, higher than those reported to inhibit NLRP3 activation. Infection was accompanied by efflux of K(+) from a minority of cells as determined using the K(+)-sensitive fluorophore PBFI, but no formation of a leaky pore. We obtained exactly the same results following infection with Salmonella typhimurium, previously described as independent of extracellular K(+). The inhibitory effect of raised extracellular K(+) on NLRC4 activation thus reflects a requirement for a decrease in intracellular K(+) for this inflammasome component as well as that described for NLRP3.


Assuntos
Proteínas de Bactérias/metabolismo , Inflamação/imunologia , Interleucina-1beta/metabolismo , Potássio/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Animais , Caspase 1/metabolismo , Immunoblotting , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/metabolismo , Infecções por Salmonella/imunologia , Infecções por Salmonella/metabolismo
17.
PLoS Pathog ; 5(6): e1000480, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19543380

RESUMO

Modified vaccinia virus Ankara (MVA) is an attenuated double-stranded DNA poxvirus currently developed as a vaccine vector against HIV/AIDS. Profiling of the innate immune responses induced by MVA is essential for the design of vaccine vectors and for anticipating potential adverse interactions between naturally acquired and vaccine-induced immune responses. Here we report on innate immune sensing of MVA and cytokine responses in human THP-1 cells, primary human macrophages and mouse bone marrow-derived macrophages (BMDMs). The innate immune responses elicited by MVA in human macrophages were characterized by a robust chemokine production and a fairly weak pro-inflammatory cytokine response. Analyses of the cytokine production profile of macrophages isolated from knockout mice deficient in Toll-like receptors (TLRs) or in the adapter molecules MyD88 and TRIF revealed a critical role for TLR2, TLR6 and MyD88 in the production of IFNbeta-independent chemokines. MVA induced a marked up-regulation of the expression of RIG-I like receptors (RLR) and the IPS-1 adapter (also known as Cardif, MAVS or VISA). Reduced expression of RIG-I, MDA-5 and IPS-1 by shRNAs indicated that sensing of MVA by RLR and production of IFNbeta and IFNbeta-dependent chemokines was controlled by the MDA-5 and IPS-1 pathway in the macrophage. Crosstalk between TLR2-MyD88 and the NALP3 inflammasome was essential for expression and processing of IL-1beta. Transcription of the Il1b gene was markedly impaired in TLR2(-/-) and MyD88(-/-) BMDM, whereas mature and secreted IL-1beta was massively reduced in NALP3(-/-) BMDMs or in human THP-1 macrophages with reduced expression of NALP3, ASC or caspase-1 by shRNAs. Innate immune sensing of MVA and production of chemokines, IFNbeta and IL-1beta by macrophages is mediated by the TLR2-TLR6-MyD88, MDA-5-IPS-1 and NALP3 inflammasome pathways. Delineation of the host response induced by MVA is critical for improving our understanding of poxvirus antiviral escape mechanisms and for designing new MVA vaccine vectors with improved immunogenicity.


Assuntos
Proteínas de Transporte/imunologia , RNA Helicases DEAD-box/imunologia , Imunidade Inata/fisiologia , Fator 88 de Diferenciação Mieloide/imunologia , Receptores Toll-Like/imunologia , Vaccinia virus/imunologia , Animais , Proteínas de Transporte/genética , Linhagem Celular , Células Cultivadas , Embrião de Galinha , Citocinas/biossíntese , Citocinas/imunologia , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Endocitose , Feminino , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Células HeLa , Humanos , Helicase IFIH1 Induzida por Interferon , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores Imunológicos , Transdução de Sinais , Receptores Toll-Like/genética , Vaccinia virus/genética
18.
J Immunol ; 182(11): 7058-68, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19454703

RESUMO

Adenovirus is a nonenveloped dsDNA virus that activates intracellular innate immune pathways. In vivo, adenovirus-immunized mice displayed an enhanced innate immune response and diminished virus-mediated gene delivery following challenge with the adenovirus vector AdLacZ suggesting that antiviral Abs modulate viral interactions with innate immune cells. Under naive serum conditions in vitro, adenovirus binding and internalization in macrophages and the subsequent activation of innate immune mechanisms were inefficient. In contrast to the neutralizing effect observed in nonhematopoietic cells, adenovirus infection in the presence of antiviral Abs significantly increased FcR-dependent viral internalization in macrophages. In direct correlation with the increased viral internalization, antiviral Abs amplified the innate immune response to adenovirus as determined by the expression of NF-kappaB-dependent genes, type I IFNs, and caspase-dependent IL-1beta maturation. Immune serum amplified TLR9-independent type I IFN expression and enhanced NLRP3-dependent IL-1beta maturation in response to adenovirus, confirming that antiviral Abs specifically amplify intracellular innate pathways. In the presence of Abs, confocal microscopy demonstrated increased targeting of adenovirus to LAMP1-positive phagolysosomes in macrophages but not epithelial cells. These data show that antiviral Abs subvert natural viral tropism and target the adenovirus to phagolysosomes and the intracellular innate immune system in macrophages. Furthermore, these results illustrate a cross-talk where the adaptive immune system positively regulates the innate immune system and the antiviral state.


Assuntos
Adenoviridae/imunologia , Anticorpos Antivirais/imunologia , Imunidade Inata/imunologia , Fagossomos/imunologia , Infecções por Adenoviridae/imunologia , Animais , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Fagocitose , Regulação para Cima/genética , Regulação para Cima/imunologia
19.
J Immunol ; 183(6): 4003-12, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19717512

RESUMO

Because IL-1beta plays an important role in inflammation in human and murine arthritis, we investigated the contribution of the inflammasome components ASC, NALP-3, IPAF, and caspase-1 to inflammatory arthritis. We first studied the phenotype of ASC-deficient and wild-type mice during Ag-induced arthritis (AIA). ASC(-/-) mice showed reduced severity of AIA, decreased levels of synovial IL-1beta, and diminished serum amyloid A levels. In contrast, mice deficient in NALP-3, IPAF, or caspase-1 did not show any alteration of joint inflammation, thus indicating that ASC associated effects on AIA are independent of the classical NALP-3 or IPAF inflammasomes. Because ASC is a ubiquitous cytoplasmic protein that has been implicated in multiple cellular processes, we explored other pathways through which ASC may modulate inflammation. Ag-specific proliferation of lymph node and spleen cells from ASC-deficient mice was significantly decreased in vitro, as was the production of IFN-gamma, whereas IL-10 production was enhanced. TCR ligation by anti-CD3 Abs in the presence or absence of anti-CD28 Abs induced a reduction in T cell proliferation in ASC(-/-) T cells compared with wild-type ones. In vivo lymph node cell proliferation was also significantly decreased in ASC(-/-) mice, but no effects on apoptosis were observed either in vitro or in vivo in these mice. In conclusion, these results strongly suggest that ASC modulates joint inflammation in AIA through its effects on cell-mediated immune responses but not via its implication in inflammasome formation.


Assuntos
Proteínas Reguladoras de Apoptose/deficiência , Artrite Experimental/etiologia , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Transporte/genética , Caspase 1/deficiência , Proteínas do Citoesqueleto/fisiologia , Inflamação/etiologia , Animais , Antígenos/toxicidade , Artrite Experimental/patologia , Proteínas Adaptadoras de Sinalização CARD , Proliferação de Células , Artropatias/patologia , Linfonodos/patologia , Camundongos , Camundongos Knockout , Complexos Multiproteicos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Baço/patologia
20.
Nat Commun ; 12(1): 5862, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615873

RESUMO

NLRP3 controls the secretion of inflammatory cytokines IL-1ß/18 and pyroptosis by assembling the inflammasome. Upon coordinated priming and activation stimuli, NLRP3 recruits NEK7 within hetero-oligomers that nucleate ASC and caspase-1 filaments, but the apical molecular mechanisms underlying inflammasome assembly remain elusive. Here we show that NEK7 recruitment to NLRP3 is controlled by the phosphorylation status of NLRP3 S803 located within the interaction surface, in which NLRP3 S803 is phosphorylated upon priming and later dephosphorylated upon activation. Phosphomimetic substitutions of S803 abolish NEK7 recruitment and inflammasome activity in macrophages in vitro and in vivo. In addition, NLRP3-NEK7 binding is also essential for NLRP3 deubiquitination by BRCC3 and subsequently inflammasome assembly, with NLRP3 phosphomimetic mutants showing enhanced ubiquitination and degradation than wildtype NLRP3. Finally, we identify CSNK1A1 as the kinase targeting NLRP3 S803. Our findings thus reveal NLRP3 S803 phosphorylation status as a druggable apical molecular mechanism controlling inflammasome assembly.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Caseína Quinase II , Caseína Quinase Ialfa , Caspase 1/metabolismo , Citocinas/metabolismo , Enzimas Desubiquitinantes , Células HEK293 , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Quinases Relacionadas a NIMA/metabolismo , Fosforilação , Piroptose , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa