Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 73(1): 168-181, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34467995

RESUMO

Pollen grains transport the sperm cells through the style tissue via a fast-growing pollen tube to the ovaries where fertilization takes place. Pollen tube growth requires a precisely regulated network of cellular as well as molecular events including the activity of the plasma membrane H+ ATPase, which is known to be regulated by reversible protein phosphorylation and subsequent binding of 14-3-3 isoforms. Immunodetection of the phosphorylated penultimate threonine residue of the pollen plasma membrane H+ ATPase (LilHA1) of Lilium longiflorum pollen revealed a sudden increase in phosphorylation with the start of pollen tube growth. In addition to phosphorylation, pH modulated the binding of 14-3-3 isoforms to the regulatory domain of the H+ ATPase, whereas metabolic components had only small effects on 14-3-3 binding, as tested with in vitro assays using recombinant 14-3-3 isoforms and phosphomimicking substitutions of the threonine residue. Consequently, local H+ influxes and effluxes as well as pH gradients in the pollen tube tip are generated by localized regulation of the H+ ATPase activity rather than by heterogeneous localized distribution in the plasma membrane.


Assuntos
Proteínas 14-3-3 , ATPases Translocadoras de Prótons , Proteínas 14-3-3/metabolismo , Membrana Celular/metabolismo , Concentração de Íons de Hidrogênio , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Tubo Polínico/metabolismo , ATPases Translocadoras de Prótons/metabolismo
2.
Plant Physiol ; 154(4): 1921-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20974894

RESUMO

To allow successful germination and growth of a pollen tube, mature and dehydrated pollen grains (PGs) take up water and have to adjust their turgor pressure according to the water potential of the surrounding stigma surface. The turgor pressure of PGs of lily (Lilium longiflorum) was measured with a modified pressure probe for simultaneous recordings of turgor pressure and membrane potential to investigate the relation between water and electrogenic ion transport in osmoregulation. Upon hyperosmolar shock, the turgor pressure decreased, and the plasma membrane (PM) hyperpolarizes in parallel, whereas depolarization of the PM was observed with hypoosmolar treatment. An acidification and alkalinization of the external medium was monitored after hyper- and hypoosmotic treatments, respectively, and pH changes were blocked by vanadate, indicating a putative role of the PM H(+) ATPase. Indeed, an increase in PM-associated 14-3-3 proteins and an increase in PM H(+) ATPase activity were detected in PGs challenged by hyperosmolar medium. We therefore suggest that in PGs the PM H(+) ATPase via modulation of its activity by 14-3-3 proteins is involved in the regulation of turgor pressure.


Assuntos
Proteínas 14-3-3/metabolismo , Adenosina Trifosfatases/metabolismo , Lilium/fisiologia , Pólen , Membrana Celular/enzimologia , Concentração de Íons de Hidrogênio , Lilium/enzimologia , Lilium/metabolismo , Potenciais da Membrana , Pressão Osmótica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa