Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Alzheimers Dement ; 19(5): 1994-2005, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36419215

RESUMO

INTRODUCTION: Carrying out a randomized controlled trial to estimate the causal effects of regional brain atrophy due to Alzheimer's disease (AD) is impossible. Instead, we must estimate causal effects from observational data. However, this generally requires knowing and having recorded all confounders, which is often unrealistic. METHODS: We provide an approach that leverages the dependencies among multiple neuroanatomical measures to estimate causal effects from observational neuroimaging data without the need to know and record all confounders. RESULTS: Our analyses of N = 732 $N=732$ subjects from the Alzheimer's Disease Neuroimaging Initiative demonstrate that using our approach results in biologically meaningful conclusions, whereas ignoring unobserved confounding yields results that conflict with established knowledge on cognitive decline due to AD. DISCUSSION: The findings provide evidence that the impact of unobserved confounding can be substantial. To ensure trustworthy scientific insights, future AD research can account for unobserved confounding via the proposed approach.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Neuroanatomia , Neuroimagem/métodos , Atrofia
2.
Neuroimage ; 260: 119505, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35878722

RESUMO

Prior work on Alzheimer's Disease (AD) has demonstrated that convolutional neural networks (CNNs) can leverage the high-dimensional image information for diagnosing patients. Beside such data-driven approaches, many established biomarkers exist and are typically represented as tabular data, such as demographics, genetic alterations, or laboratory measurements from cerebrospinal fluid. However, little research has focused on the effective integration of tabular data into existing CNN architectures to improve patient diagnosis. We introduce the Dynamic Affine Feature Map Transform (DAFT), a general-purpose module for CNNs that incites or represses high-level concepts learned from a 3D image by conditioning feature maps of a convolutional layer on both a patient's image and tabular clinical information. This is achieved by using an auxiliary neural network that outputs a scaling factor and offset to dynamically apply an affine transformation to the feature maps of a convolutional layer. In our experiments on AD diagnosis and time-to-dementia prediction, we show that the DAFT is highly effective in combining 3D image and tabular information by achieving a mean balanced accuracy of 0.622 for diagnosis, and mean c-index of 0.748 for time-to-dementia prediction, thus outperforming all baseline methods. Finally, our extensive ablation study and empirical experiments reveal that the performance improvement due to the DAFT is robust with respect to many design choices.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Doença de Alzheimer/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação
3.
BMC Med Inform Decis Mak ; 15: 9, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25889930

RESUMO

BACKGROUND: Percutaneous coronary intervention (PCI) is the most commonly performed treatment for coronary atherosclerosis. It is associated with a higher incidence of repeat revascularization procedures compared to coronary artery bypass grafting surgery. Recent results indicate that PCI is only cost-effective for a subset of patients. Estimating risks of treatment options would be an effort toward personalized treatment strategy for coronary atherosclerosis. METHODS: In this paper, we propose to model clinical knowledge about the treatment of coronary atherosclerosis to identify patient-subgroup-specific classifiers to predict the risk of adverse events of different treatment options. We constructed one model for each patient subgroup to account for subgroup-specific interpretation and availability of features and hierarchically aggregated these models to cover the entire data. In addition, we deviated from the current clinical workflow only for patients with high probability of benefiting from an alternative treatment, as suggested by this model. Consequently, we devised a two-stage test with optimized negative and positive predictive values as the main indicators of performance. Our analysis was based on 2,377 patients that underwent PCI. Performance was compared with a conventional classification model and the existing clinical practice by estimating effectiveness, safety, and costs for different endpoints (6 month angiographic restenosis, 12 and 36 month hazardous events). RESULTS: Compared to the current clinical practice, the proposed method achieved an estimated reduction in adverse effects by 25.0% (95% CI, 17.8 to 30.2) for hazardous events at 36 months and 31.2% (95% CI, 25.4 to 39.0) for hazardous events at 12 months. Estimated total savings per patient amounted to $693 and $794 at 12 and 36 months, respectively. The proposed subgroup-specific method outperformed conventional population wide regression: The median area under the receiver operating characteristic curve increased from 0.57 to 0.61 for prediction of angiographic restenosis and from 0.76 to 0.85 for prediction of hazardous events. CONCLUSIONS: The results of this study demonstrated the efficacy of deployment of bare-metal stents and coronary artery bypass grafting surgery for subsets of patients. This is one effort towards development of personalized treatment strategies for patients with coronary atherosclerosis that could significantly impact associated treatment costs.


Assuntos
Aterosclerose/terapia , Tomada de Decisão Clínica/métodos , Doença da Artéria Coronariana/terapia , Sistemas de Apoio a Decisões Clínicas , Complicações Pós-Operatórias/prevenção & controle , Idoso , Ponte de Artéria Coronária/efeitos adversos , Ponte de Artéria Coronária/economia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/economia , Stents/efeitos adversos , Stents/economia
4.
Heliyon ; 9(11): e22239, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034698

RESUMO

Rationale and objectives: We evaluate the automatic identification of type 2 diabetes from neck-to-knee, two-point Dixon MRI scans with 3D convolutional neural networks on a large, population-based dataset. To this end, we assess the best combination of MRI contrasts and stations for diabetes prediction, and the benefit of integrating risk factors. Materials and methods: Subjects with type 2 diabetes mellitus have been identified in the prospective UK Biobank Imaging study, and a matched control sample has been created to avoid confounding bias. Five-fold cross-validation is used for the evaluation. All scans from the two-point Dixon neck-to-knee sequence have been standardized. A neural network that considers multi-channel MRI input was developed and integrates clinical information in tabular format. An ensemble strategy is used to combine multi-station MRI predictions. A subset with quantitative fat measurements is identified for comparison to prior approaches. Results: MRI scans from 3406 subjects (mean age, 66.2 years ± 7.1 [standard deviation]; 1128 women) were analyzed with 1703 diabetics. A balanced accuracy of 78.7 %, AUC ROC of 0.872, and an average precision of 0.878 was obtained for the classification of diabetes. The ensemble over multiple Dixon MRI stations yields better performance than selecting the individually best station. Moreover, combining fat and water scans as multi-channel inputs to the networks improves upon just using single contrasts as input. Integrating clinical information about known risk factors of diabetes in the network boosts the performance across all stations and the ensemble. The neural network achieved superior results compared to the prediction based on quantitative MRI measurements. Conclusions: The developed deep learning model accurately predicted type 2 diabetes from neck-to-knee two-point Dixon MRI scans.

5.
JCPP Adv ; 3(4): e12184, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38054056

RESUMO

Background: Prediction of mental disorders based on neuroimaging is an emerging area of research with promising first results in adults. However, research on the unique demographic of children is underrepresented and it is doubtful whether findings obtained on adults can be transferred to children. Methods: Using data from 6916 children aged 9-10 in the multicenter Adolescent Brain Cognitive Development study, we extracted 136 regional volume and thickness measures from structural magnetic resonance images to rigorously evaluate the capabilities of machine learning to predict 10 different psychiatric disorders: major depressive disorder, bipolar disorder (BD), psychotic symptoms, attention deficit hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, post-traumatic stress disorder, obsessive-compulsive disorder, generalized anxiety disorder, and social anxiety disorder. For each disorder, we performed cross-validation and assessed whether models discovered a true pattern in the data via permutation testing. Results: Two of 10 disorders can be detected with statistical significance when using advanced models that (i) allow for non-linear relationships between neuroanatomy and disorder, (ii) model interdependencies between disorders, and (iii) avoid confounding due to sociodemographic factors: ADHD (AUROC = 0.567, p = 0.002) and BD (AUROC = 0.551, p = 0.002). In contrast, traditional models perform consistently worse and predict only ADHD with statistical significance (AUROC = 0.529, p = 0.002). Conclusion: While the modest absolute classification performance does not warrant application in the clinic, our results provide empirical evidence that embracing and explicitly accounting for the complexities of mental disorders via advanced machine learning models can discover patterns that would remain hidden with traditional models.

6.
Sci Rep ; 12(1): 8619, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597814

RESUMO

Deep learning offers a powerful approach for analyzing hippocampal changes in Alzheimer's disease (AD) without relying on handcrafted features. Nevertheless, an input format needs to be selected to pass the image information to the neural network, which has wide ramifications for the analysis, but has not been evaluated yet. We compare five hippocampal representations (and their respective tailored network architectures) that span from raw images to geometric representations like meshes and point clouds. We performed a thorough evaluation for the prediction of AD diagnosis and time-to-dementia prediction with experiments on an independent test dataset. In addition, we evaluated the ease of interpretability for each representation-network pair. Our results show that choosing an appropriate representation of the hippocampus for predicting Alzheimer's disease with deep learning is crucial, since it impacts performance and ease of interpretation.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Doença de Alzheimer/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
7.
Med Image Anal ; 67: 101879, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152602

RESUMO

The desire to train complex machine learning algorithms and to increase the statistical power in association studies drives neuroimaging research to use ever-larger datasets. The most obvious way to increase sample size is by pooling scans from independent studies. However, simple pooling is often ill-advised as selection, measurement, and confounding biases may creep in and yield spurious correlations. In this work, we combine 35,320 magnetic resonance images of the brain from 17 studies to examine bias in neuroimaging. In the first experiment, Name That Dataset, we provide empirical evidence for the presence of bias by showing that scans can be correctly assigned to their respective dataset with 71.5% accuracy. Given such evidence, we take a closer look at confounding bias, which is often viewed as the main shortcoming in observational studies. In practice, we neither know all potential confounders nor do we have data on them. Hence, we model confounders as unknown, latent variables. Kolmogorov complexity is then used to decide whether the confounded or the causal model provides the simplest factorization of the graphical model. Finally, we present methods for dataset harmonization and study their ability to remove bias in imaging features. In particular, we propose an extension of the recently introduced ComBat algorithm to control for global variation across image features, inspired by adjusting for unknown population stratification in genetics. Our results demonstrate that harmonization can reduce dataset-specific information in image features. Further, confounding bias can be reduced and even turned into a causal relationship. However, harmonization also requires caution as it can easily remove relevant subject-specific information. Code is available at https://github.com/ai-med/Dataset-Bias.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Algoritmos , Viés , Humanos , Aprendizado de Máquina
8.
BMC Bioinformatics ; 11: 233, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20459647

RESUMO

BACKGROUND: Phenomenological information about regulatory interactions is frequently available and can be readily converted to Boolean models. Fully quantitative models, on the other hand, provide detailed insights into the precise dynamics of the underlying system. In order to connect discrete and continuous modeling approaches, methods for the conversion of Boolean systems into systems of ordinary differential equations have been developed recently. As biological interaction networks have steadily grown in size and complexity, a fully automated framework for the conversion process is desirable. RESULTS: We present Odefy, a MATLAB- and Octave-compatible toolbox for the automated transformation of Boolean models into systems of ordinary differential equations. Models can be created from sets of Boolean equations or graph representations of Boolean networks. Alternatively, the user can import Boolean models from the CellNetAnalyzer toolbox, GINSim and the PBN toolbox. The Boolean models are transformed to systems of ordinary differential equations by multivariate polynomial interpolation and optional application of sigmoidal Hill functions. Our toolbox contains basic simulation and visualization functionalities for both, the Boolean as well as the continuous models. For further analyses, models can be exported to SQUAD, GNA, MATLAB script files, the SB toolbox, SBML and R script files. Odefy contains a user-friendly graphical user interface for convenient access to the simulation and exporting functionalities. We illustrate the validity of our transformation approach as well as the usage and benefit of the Odefy toolbox for two biological systems: a mutual inhibitory switch known from stem cell differentiation and a regulatory network giving rise to a specific spatial expression pattern at the mid-hindbrain boundary. CONCLUSIONS: Odefy provides an easy-to-use toolbox for the automatic conversion of Boolean models to systems of ordinary differential equations. It can be efficiently connected to a variety of input and output formats for further analysis and investigations. The toolbox is open-source and can be downloaded at http://cmb.helmholtz-muenchen.de/odefy.


Assuntos
Modelos Estatísticos , Software , Algoritmos , Bases de Dados Factuais , Redes Reguladoras de Genes
9.
Med Image Anal ; 59: 101587, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31630012

RESUMO

Deep neural networks enable highly accurate image segmentation, but require large amounts of manually annotated data for supervised training. Few-shot learning aims to address this shortcoming by learning a new class from a few annotated support examples. We introduce, a novel few-shot framework, for the segmentation of volumetric medical images with only a few annotated slices. Compared to other related works in computer vision, the major challenges are the absence of pre-trained networks and the volumetric nature of medical scans. We address these challenges by proposing a new architecture for few-shot segmentation that incorporates 'squeeze & excite' blocks. Our two-armed architecture consists of a conditioner arm, which processes the annotated support input and generates a task-specific representation. This representation is passed on to the segmenter arm that uses this information to segment the new query image. To facilitate efficient interaction between the conditioner and the segmenter arm, we propose to use 'channel squeeze & spatial excitation' blocks - a light-weight computational module - that enables heavy interaction between both the arms with negligible increase in model complexity. This contribution allows us to perform image segmentation without relying on a pre-trained model, which generally is unavailable for medical scans. Furthermore, we propose an efficient strategy for volumetric segmentation by optimally pairing a few slices of the support volume to all the slices of the query volume. We perform experiments for organ segmentation on whole-body contrast-enhanced CT scans from the Visceral Dataset. Our proposed model outperforms multiple baselines and existing approaches with respect to the segmentation accuracy by a significant margin. The source code is available at https://github.com/abhi4ssj/few-shot-segmentation.


Assuntos
Redes Neurais de Computação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Vísceras/diagnóstico por imagem , Meios de Contraste , Aprendizado Profundo , Humanos , Imagem Corporal Total
10.
Mol Cancer Ther ; 18(8): 1396-1404, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31262731

RESUMO

It is increasingly appreciated that drug response to different cancers driven by the same oncogene is different and may relate to differences in rewiring of signal transduction. We aimed to study differences in dynamic signaling changes within mutant KRAS (KRAS MT), non-small cell lung cancer (NSCLC), colorectal cancer, and pancreatic ductal adenocarcinoma (PDAC) cells. We used an antibody-based phosphoproteomic platform to study changes in 50 phosphoproteins caused by seven targeted anticancer drugs in a panel of 30 KRAS MT cell lines and cancer cells isolated from 10 patients with KRAS MT cancers. We report for the first time significant differences in dynamic signaling between colorectal cancer and NSCLC cell lines exposed to clinically relevant equimolar concentrations of the pan-PI3K inhibitor pictilisib including a lack of reduction of p-AKTser473 in colorectal cancer cell lines (P = 0.037) and lack of compensatory increase in p-MEK in NSCLC cell lines (P = 0.036). Differences in rewiring of signal transduction between tumor types driven by KRAS MT cancers exist and influence response to combination therapy using targeted agents.


Assuntos
Mutação , Neoplasias/genética , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteoma , Proteômica/métodos
11.
Artif Intell Med ; 72: 1-11, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27664504

RESUMO

BACKGROUND: In clinical research, the primary interest is often the time until occurrence of an adverse event, i.e., survival analysis. Its application to electronic health records is challenging for two main reasons: (1) patient records are comprised of high-dimensional feature vectors, and (2) feature vectors are a mix of categorical and real-valued features, which implies varying statistical properties among features. To learn from high-dimensional data, researchers can choose from a wide range of methods in the fields of feature selection and feature extraction. Whereas feature selection is well studied, little work focused on utilizing feature extraction techniques for survival analysis. RESULTS: We investigate how well feature extraction methods can deal with features having varying statistical properties. In particular, we consider multiview spectral embedding algorithms, which specifically have been developed for these situations. We propose to use random survival forests to accurately determine local neighborhood relations from right censored survival data. We evaluated 10 combinations of feature extraction methods and 6 survival models with and without intrinsic feature selection in the context of survival analysis on 3 clinical datasets. Our results demonstrate that for small sample sizes - less than 500 patients - models with built-in feature selection (Cox model with ℓ1 penalty, random survival forest, and gradient boosted models) outperform feature extraction methods by a median margin of 6.3% in concordance index (inter-quartile range: [-1.2%;14.6%]). CONCLUSIONS: If the number of samples is insufficient, feature extraction methods are unable to reliably identify the underlying manifold, which makes them of limited use in these situations. For large sample sizes - in our experiments, 2500 samples or more - feature extraction methods perform as well as feature selection methods.


Assuntos
Algoritmos , Registros Eletrônicos de Saúde , Análise de Sobrevida , Árvores de Decisões , Humanos , Informática Médica , Máquina de Vetores de Suporte
12.
F1000Res ; 5: 2676, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28713544

RESUMO

Ensemble methods have been successfully applied in a wide range of scenarios, including survival analysis. However, most ensemble models for survival analysis consist of models that all optimize the same loss function and do not fully utilize the diversity in available models. We propose heterogeneous survival ensembles that combine several survival models, each optimizing a different loss during training. We evaluated our proposed technique in the context of the Prostate Cancer DREAM Challenge, where the objective was to predict survival of patients with metastatic, castrate-resistant prostate cancer from patient records of four phase III clinical trials. Results demonstrate that a diverse set of survival models were preferred over a single model and that our heterogeneous ensemble of survival models outperformed all competing methods with respect to predicting the exact time of death in the Prostate Cancer DREAM Challenge.

13.
Med Image Comput Comput Assist Interv ; 14(Pt 2): 607-14, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21995079

RESUMO

Registering CT scans in a body atlas is an important technique for aligning and comparing different CT scans. It is also required for navigating automatically to certain regions of a scan or if sub volumes should be identified automatically. Common solutions to this problem employ landmark detectors and interpolation techniques. However, these solutions are often not applicable if the query scan is very small or consists only of a single slice. Therefore, the research community proposed methods being independent from landmark detectors which are using imaging techniques to register the slices in a generalized height scale. In this paper, we propose an improved prediction method for registering single slices. Our solution is based on specialized image descriptors and instance-based learning. The experimental evaluation shows that the new method improves accuracy and stability of comparable registration methods by using only a single CT slice is required for the registration.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Pescoço/patologia , Radiografia Torácica/métodos , Software
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa