Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Exp Biol ; 225(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36426666

RESUMO

Organisms can modify and increase their thermal tolerance faster and more efficiently after a brief exposure to sublethal thermal stress. This response is called 'heat hardening' as it leads to the generation of phenotypes with increased heat tolerance. The aim of this study was to investigate the impact of heat hardening on the metabolomic profile of Mytilus galloprovincialis in order to identify the associated adjustments of biochemical pathways that might benefit the mussels' thermal tolerance. Thus, mussels were exposed sequentially to two different phases (heat hardening and acclimation phases). To gain further insight into the possible mechanisms underlying the metabolic response of the heat-hardened M. galloprovincialis, metabolomics analysis was complemented by the estimation of mRNA expression of phosphoenolpyruvate carboxykinase (PEPCK), pyruvate kinase (PK) and alternative oxidase (AOX) implicated in the metabolic pathways of gluconeogenesis, glycolysis and redox homeostasis, respectively. Heat-hardened mussels showed evidence of higher activity of the tricarboxylic acid (TCA) cycle and diversification of upregulated metabolic pathways, possibly as a mechanism to increase ATP production and extend survival under heat stress. Moreover, formate and taurine accumulation provide an antioxidant and cytoprotective role in mussels during hypoxia and thermal stress. Overall, the metabolic responses in non-heat-hardened and heat-hardened mussels underline the upper thermal limits of M. galloprovincialis, set at 26°C, and are in accordance with the OCLTT concept. The ability of heat-hardened mussels to undergo a rapid gain and slow loss of heat tolerance may be an advantageous strategy for coping with intermittent and often extreme temperatures.


Assuntos
Mytilus , Termotolerância , Animais , Mytilus/fisiologia , Resposta ao Choque Térmico , Temperatura Alta , Aclimatação/fisiologia
2.
J Exp Biol ; 224(Pt Suppl 1)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627467

RESUMO

Physiological studies contribute to a cause and effect understanding of ecological patterns under climate change and identify the scope and limits of adaptation. Across most habitats, this requires analyzing organism responses to warming, which can be modified by other drivers such as acidification and oxygen loss in aquatic environments or excess humidity or drought on land. Experimental findings support the hypothesis that the width and temperature range of thermal performance curves relate to biogeographical range. Current warming causes range shifts, hypothesized to include constraints in aerobic power budget which in turn are elicited by limitations in oxygen supply capacity in relation to demand. Different metabolic scopes involved may set the borders of both the fundamental niche (at standard metabolic rate) and the realized niche (at routine rate). Relative scopes for aerobic performance also set the capacity of species to interact with others at the ecosystem level. Niche limits and widths are shifting and probably interdependent across life stages, with young adults being least thermally vulnerable. The principles of thermal tolerance and performance may also apply to endotherms including humans, their habitat and human society. Overall, phylogenetically based comparisons would need to consider the life cycle of species as well as organism functional properties across climate zones and time scales. This Review concludes with a perspective on how mechanism-based understanding allows scrutinizing often simplified modeling approaches projecting future climate impacts and risks for aquatic and terrestrial ecosystems. It also emphasizes the usefulness of a consensus-building process among experimentalists for better recognition in the climate debate.


Assuntos
Organismos Aquáticos , Ecossistema , Aclimatação , Mudança Climática , Humanos , Oxigênio , Temperatura
3.
J Fish Biol ; 98(6): 1509-1523, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33161577

RESUMO

Monitoring variations in proteins involved in metabolic processes, oxidative stress responses, cell signalling and protein homeostasis is a powerful tool for developing hypotheses of how environmental variations affect marine organisms' physiology and biology. According to the oxygen- and capacity-limited thermal tolerance hypothesis, thermal acclimation mechanisms such as adjusting the activities of enzymes of intermediary metabolism and of antioxidant defence mechanisms, inducing heat shock proteins (Hsps) or activating mitogen-activated protein kinases may all shift tolerance windows. Few studies have, however, investigated the molecular, biochemical and organismal responses by fishes to seasonal temperature variations in the field to link these to laboratory findings. Investigation of the impacts of global warming on fishes farmed offsore, in the open sea, can provide a stepping stone towards understanding effects on wild populations because they experience similar environmental fluctuations. Over the last 30 years, farming of the gilthead sea bream Sparus aurata (Linnaeus 1758) has become widespread along the Mediterranean coastline, rendering this species a useful case study. Based on available information, the prevailing seasonal temperature variations expose the species to the upper and lower limits of its thermal range. Evidence for this includes oxygen restriction, reduced feeding, reduced responsiveness to environmental stimuli, plus a range of molecular and biochemical indicators that change across the thermal range. Additionally, close relationships between biochemical pathways and seasonal patterns of metabolism indicate a connection between energy demand and metabolic processes on the one hand, and cellular stress responses such as oxidative stress, inflammation and autophagy on the other. Understanding physiological responses to temperature fluctuations in fishes farmed offshore can provide crucial background information for the conservation and successful management of aquaculture resources in the face of global change.


Assuntos
Dourada , Animais , Aquicultura , Aquecimento Global , Estações do Ano , Temperatura
4.
Proc Biol Sci ; 285(1872)2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445023

RESUMO

Whether sex determination of marine organisms can be altered by ocean acidification and warming during this century remains a significant, unanswered question. Here, we show that exposure of the protandric hermaphrodite oyster, Saccostrea glomerata to ocean acidification, but not warming, alters sex determination resulting in changes in sex ratios. After just one reproductive cycle there were 16% more females than males. The rate of gametogenesis, gonad area, fecundity, shell length, extracellular pH and survival decreased in response to ocean acidification. Warming as a sole stressor slightly increased the rate of gametogenesis, gonad area and fecundity, but this increase was masked by the impact of ocean acidification at a level predicted for this century. Alterations to sex determination, sex ratios and reproductive capacity will have flow on effects to reduce larval supply and population size of oysters and potentially other marine organisms.


Assuntos
Dióxido de Carbono/análise , Ostreidae/fisiologia , Água do Mar/química , Processos de Determinação Sexual , Animais , Mudança Climática , Temperatura Alta , Razão de Masculinidade
5.
NMR Biomed ; 31(8): e3955, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932479

RESUMO

Chemical exchange saturation transfer (CEST) from taurine to water (TauCEST) can be used for in vivo mapping of taurine concentrations as well as for measurements of relative changes in intracellular pH (pHi ) at temperatures below 37°C. Therefore, TauCEST offers the opportunity to investigate acid-base regulation and neurological disturbances of ectothermic animals living at low temperatures, and in particular to study the impact of ocean acidification (OA) on neurophysiological changes of fish. Here, we report the first in vivo application of TauCEST imaging. Thus, the study aimed to investigate the TauCEST effect in a broad range of temperatures (1-37°C) and pH (5.5-8.0), motivated by the high taurine concentration measured in the brains of polar fish. The in vitro data show that the TauCEST effect is especially detectable in the low temperature range and strictly monotonic for the relevant pH range (6.8-7.5). To investigate the specificity of TauCEST imaging for the brain of polar cod (Boreogadus saida) at 1.5°C simulations were carried out, indicating a taurine contribution of about 65% to the in vivo expected CEST effect, if experimental parameters are optimized. B. saida was acutely exposed to three different CO2 concentrations in the sea water (control normocapnia; comparatively moderate hypercapnia OAm  = 3300 µatm; high hypercapnia OAh  = 4900 µatm). TauCEST imaging of the brain showed a significant increase in the TauCEST effect under the different CO2 concentrations of about 1.5-3% in comparison with control measurements, indicative of changes in pHi or metabolite concentration. Consecutive recordings of 1 H MR spectra gave no support for a concentration induced change of the in vivo observed TauCEST effect. Thus, the in vivo application of TauCEST offers the possibility of mapping relative changes in pHi in the brain of polar cod during exposure to CO2 .


Assuntos
Encéfalo/metabolismo , Dióxido de Carbono/farmacologia , Peixes/metabolismo , Imageamento por Ressonância Magnética , Taurina/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Temperatura
6.
Front Zool ; 14: 21, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28416963

RESUMO

BACKGROUND: Ocean acidification and warming are happening fast in the Arctic but little is known about the effects of ocean acidification and warming on the physiological performance and survival of Arctic fish. RESULTS: In this study we investigated the metabolic background of performance through analyses of cardiac mitochondrial function in response to control and elevated water temperatures and PCO2 of two gadoid fish species, Polar cod (Boreogadus saida), an endemic Arctic species, and Atlantic cod (Gadus morhua), which is a temperate to cold eurytherm and currently expanding into Arctic waters in the wake of ocean warming. We studied their responses to the above-mentioned drivers and their acclimation potential through analysing the cardiac mitochondrial function in permeabilised cardiac muscle fibres after 4 months of incubation at different temperatures (Polar cod: 0, 3, 6, 8 °C and Atlantic cod: 3, 8, 12, 16 °C), combined with exposure to present (400µatm) and year 2100 (1170µatm) levels of CO2. OXPHOS, proton leak and ATP production efficiency in Polar cod were similar in the groups acclimated at 400µatm and 1170µatm of CO2, while incubation at 8 °C evoked increased proton leak resulting in decreased ATP production efficiency and decreased Complex IV capacity. In contrast, OXPHOS of Atlantic cod increased with temperature without compromising the ATP production efficiency, whereas the combination of high temperature and high PCO2 depressed OXPHOS and ATP production efficiency. CONCLUSIONS: Polar cod mitochondrial efficiency decreased at 8 °C while Atlantic cod mitochondria were more resilient to elevated temperature; however, this resilience was constrained by high PCO2. In line with its lower habitat temperature and higher degree of stenothermy, Polar cod has a lower acclimation potential to warming than Atlantic cod.

7.
J Exp Biol ; 220(Pt 15): 2685-2696, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768746

RESUMO

Observations of climate impacts on ecosystems highlight the need for an understanding of organismal thermal ranges and their implications at the ecosystem level. Where changes in aquatic animal populations have been observed, the integrative concept of oxygen- and capacity-limited thermal tolerance (OCLTT) has successfully characterised the onset of thermal limits to performance and field abundance. The OCLTT concept addresses the molecular to whole-animal mechanisms that define thermal constraints on the capacity for oxygen supply to the organism in relation to oxygen demand. The resulting 'total excess aerobic power budget' supports an animal's performance (e.g. comprising motor activity, reproduction and growth) within an individual's thermal range. The aerobic power budget is often approximated through measurements of aerobic scope for activity (i.e. the maximum difference between resting and the highest exercise-induced rate of oxygen consumption), whereas most animals in the field rely on lower (i.e. routine) modes of activity. At thermal limits, OCLTT also integrates protective mechanisms that extend time-limited tolerance to temperature extremes - mechanisms such as chaperones, anaerobic metabolism and antioxidative defence. Here, we briefly summarise the OCLTT concept and update it by addressing the role of routine metabolism. We highlight potential pitfalls in applying the concept and discuss the variables measured that led to the development of OCLTT. We propose that OCLTT explains why thermal vulnerability is highest at the whole-animal level and lowest at the molecular level. We also discuss how OCLTT captures the thermal constraints on the evolution of aquatic animal life and supports an understanding of the benefits of transitioning from water to land.


Assuntos
Evolução Biológica , Metabolismo Energético/fisiologia , Invertebrados/fisiologia , Consumo de Oxigênio/fisiologia , Termotolerância/fisiologia , Vertebrados/fisiologia , Animais , Organismos Aquáticos/fisiologia , Clima , Ecossistema
8.
Environ Sci Technol ; 51(12): 7208-7218, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28493692

RESUMO

Eulimnogammarus cyaneus and Eulimnogammarus verrucosus, closely related amphipod species endemic to Lake Baikal, differ with respect to body size (10- to 50-fold lower fresh weights of E. cyaneus) and cellular stress response (CSR) capacity, potentially causing species-related differences in uptake, internal sequestration, and toxic sensitivity to waterborne cadmium (Cd). We found that, compared to E. verrucosus, Cd uptake rates, related to a given exposure concentration, were higher, and lethal concentrations (50%; LC50) were 2.3-fold lower in E. cyaneus (4 weeks exposure; 6 °C). Upon exposures to species-specific subacutely toxic Cd concentrations (nominal LC1; E. cyaneus: 18 nM (2.0 µg L-1); E. verrucosus: 115 nM (12.9 µg L-1); 4 weeks exposure; 6 °C), Cd amounts in metal sensitive tissue fractions (MSF), in relation to fresh weight, were similar in both species (E. cyaneus: 0.25 ± 0.06 µg g-1; E. verrucosus: 0.26 ± 0.07 µg g-1), whereas relative Cd amounts in the biologically detoxified heat stable protein fraction were 35% higher in E. cyaneus. Despite different potencies in detoxifying Cd, body size appears to mainly explain species-related differences in Cd uptake and sensitivities. When exposed to Cd at LC1 over 4 weeks, only E. verrucosus continuously showed 15-36% reduced oxygen consumption rates indicating metabolic depression and pointing to particular sensitivity of E. verrucosus to persisting low-level toxicant pressure.


Assuntos
Anfípodes , Cádmio/farmacocinética , Poluentes Químicos da Água/farmacocinética , Animais , Cádmio/toxicidade , Inativação Metabólica , Cinética , Lagos , Poluentes Químicos da Água/toxicidade
9.
Front Zool ; 12: 6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25897316

RESUMO

INTRODUCTION: The Antarctic Ocean hosts a rich and diverse fauna despite inhospitable temperatures close to freezing, which require specialist adaptations to sustain animal activity and various underlying body functions. While oxygen transport has been suggested to be key in setting thermal tolerance in warmer climates, this constraint is relaxed in Antarctic fishes and crustaceans, due to high levels of dissolved oxygen. Less is known about how other Antarctic ectotherms cope with temperatures near zero, particularly the more active invertebrates like the abundant octopods. A continued reliance on the highly specialised blood oxygen transport system of cephalopods may concur with functional constraints at cold temperatures. We therefore analysed the octopod's central oxygen transport component, the blue blood pigment haemocyanin, to unravel strategies that sustain oxygen supply at cold temperatures. RESULTS: To identify adaptive compensation of blood oxygen transport in octopods from different climatic regions, we compared haemocyanin oxygen binding properties, oxygen carrying capacities as well as haemolymph protein and ion composition between the Antarctic octopod Pareledone charcoti, the South-east Australian Octopus pallidus and the Mediterranean Eledone moschata. In the Antarctic Pareledone charcoti at 0°C, oxygen unloading by haemocyanin was poor but supported by high levels of dissolved oxygen. However, lower oxygen affinity and higher oxygen carrying capacity compared to warm water octopods, still enabled significant contribution of haemocyanin to oxygen transport at 0°C. At warmer temperatures, haemocyanin of Pareledone charcoti releases most of the bound oxygen, supporting oxygen supply at 10°C. In warm water octopods, increasing oxygen affinities reduce the ability to release oxygen from haemocyanin at colder temperatures. Though, unlike Eledone moschata, Octopus pallidus attenuated this increase below 15°C. CONCLUSIONS: Adjustments of haemocyanin physiological function and haemocyanin concentrations but also high dissolved oxygen concentrations support oxygen supply in the Antarctic octopus Pareledone charcoti at near freezing temperatures. Increased oxygen supply by haemocyanin at warmer temperatures supports extended warm tolerance and thus eurythermy of Pareledone charcoti. Limited haemocyanin function towards colder temperatures in Antarctic and warm water octopods highlights the general role of haemocyanin oxygen transport in constraining cold tolerance in octopods.

10.
Artigo em Inglês | MEDLINE | ID: mdl-25535111

RESUMO

Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 µatm) and temperature (18°C). Isolated perfused gill preparations were established to determine gill thermal plasticity during acute exposures (10-22°C) and in vivo costs of Na(+)/K(+)-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H(+)-ATPase and Na(+)/K(+)-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na(+)/K(+)-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na(+)/K(+)-ATPase, which remained unchanged under elevated CO2 at 10°C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na(+)/K(+)ATPase and H(+)-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature.


Assuntos
Gadus morhua/metabolismo , Brânquias/metabolismo , Hipercapnia/metabolismo , Animais , Dióxido de Carbono/metabolismo , Metabolismo Energético , Feminino , Proteínas de Peixes/metabolismo , Masculino , Técnicas de Cultura de Órgãos , Perfusão , ATPases Translocadoras de Prótons/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Temperatura
11.
Glob Chang Biol ; 20(10): 3059-67, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24890266

RESUMO

Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean.


Assuntos
Adaptação Fisiológica , Organismos Aquáticos , Evolução Biológica , Mudança Climática , Ecossistema , Aclimatação/fisiologia , Archaea , Bactérias , Eucariotos , Temperatura Alta , Oceanos e Mares , Oxigênio/metabolismo
12.
J Exp Biol ; 217(Pt 9): 1430-6, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24436387

RESUMO

Oxygen equilibrium curves have been widely used to understand oxygen transport in numerous organisms. A major challenge has been to monitor oxygen binding characteristics and concomitant pH changes as they occur in vivo, in limited sample volumes. Here we report a technique allowing highly resolved and simultaneous monitoring of pH and blood pigment saturation in minute blood volumes. We equipped a gas diffusion chamber with a broad-range fibre-optic spectrophotometer and a micro-pH optode and recorded changes of pigment oxygenation along oxygen partial pressure (PO2) and pH gradients to test the setup. Oxygen binding parameters derived from measurements in only 15 µl of haemolymph from the cephalopod Octopus vulgaris showed low instrumental error (0.93%) and good agreement with published data. Broad-range spectra, each resolving 2048 data points, provided detailed insight into the complex absorbance characteristics of diverse blood types. After consideration of photobleaching and intrinsic fluorescence, pH optodes yielded accurate recordings and resolved a sigmoidal shift of 0.03 pH units in response to changing PO2 from 0 to 21 kPa. Highly resolved continuous recordings along pH gradients conformed to stepwise measurements at low rates of pH changes. In this study we showed that a diffusion chamber upgraded with a broad-range spectrophotometer and an optical pH sensor accurately characterizes oxygen binding with minimal sample consumption and manipulation. We conclude that the modified diffusion chamber is highly suitable for experimental biologists who demand high flexibility, detailed insight into oxygen binding as well as experimental and biological accuracy combined in a single setup.


Assuntos
Hemolinfa/metabolismo , Oxigênio/metabolismo , Anfípodes/metabolismo , Animais , Gasometria/métodos , Peixes , Hemocianinas/metabolismo , Concentração de Íons de Hidrogênio , Octopodiformes , Espectrofotometria
13.
J Exp Biol ; 217(Pt 4): 518-25, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24523499

RESUMO

Little is known about the capacity of early life stages to undergo hypercapnic and thermal acclimation under the future scenarios of ocean acidification and warming. Here, we investigated a comprehensive set of biological responses to these climate change-related variables (2°C above winter and summer average spawning temperatures and ΔpH=0.5 units) during the early ontogeny of the squid Loligo vulgaris. Embryo survival rates ranged from 92% to 96% under present-day temperature (13-17°C) and pH (8.0) scenarios. Yet, ocean acidification (pH 7.5) and summer warming (19°C) led to a significant drop in the survival rates of summer embryos (47%, P<0.05). The embryonic period was shortened by increasing temperature in both pH treatments (P<0.05). Embryo growth rates increased significantly with temperature under present-day scenarios, but there was a significant trend reversal under future summer warming conditions (P<0.05). Besides pronounced premature hatching, a higher percentage of abnormalities was found in summer embryos exposed to future warming and lower pH (P<0.05). Under the hypercapnic scenario, oxygen consumption rates decreased significantly in late embryos and newly hatched paralarvae, especially in the summer period (P<0.05). Concomitantly, there was a significant enhancement of the heat shock response (HSP70/HSC70) with warming in both pH treatments and developmental stages. Upper thermal tolerance limits were positively influenced by acclimation temperature, and such thresholds were significantly higher in late embryos than in hatchlings under present-day conditions (P<0.05). In contrast, the upper thermal tolerance limits under hypercapnia were higher in hatchlings than in embryos. Thus, we show that the stressful abiotic conditions inside the embryo's capsules will be exacerbated under near-future ocean acidification and summer warming scenarios. The occurrence of prolonged embryogenesis along with lowered thermal tolerance limits under such conditions is expected to negatively affect the survival success of squid early life stages during the summer spawning period, but not winter spawning.


Assuntos
Decapodiformes/fisiologia , Embrião não Mamífero/fisiologia , Água do Mar/química , Temperatura , Aclimatação , Animais , Mudança Climática , Decapodiformes/embriologia , Desenvolvimento Embrionário , Resposta ao Choque Térmico , Concentração de Íons de Hidrogênio , Larva/crescimento & desenvolvimento , Larva/fisiologia , Oceanos e Mares , Consumo de Oxigênio , Estações do Ano
14.
Proc Biol Sci ; 280(1768): 20131695, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23926158

RESUMO

The combined effects of future ocean acidification and global warming on the hypoxia thresholds of marine biota are, to date, poorly known. Here, we show that the future warming and acidification scenario led to shorter embryonic periods, lower survival rates and the enhancement of premature hatching in the cuttlefish Sepia officinalis. Routine metabolic rates increased during the embryonic period, but environmental hypercapnia significantly depressed pre-hatchling's energy expenditures rates (independently of temperature). During embryogenesis, there was also a significant rise in the carbon dioxide partial pressure in the perivitelline fluid (PVF), bicarbonate levels, as well as a drop in pH and oxygen partial pressure (pO2). The critical partial pressure (i.e. hypoxic threshold) of the pre-hatchlings was significantly higher than the PVF oxygen partial pressure at the warmer and hypercapnic condition. Thus, the record of oxygen tensions below critical pO2 in such climate scenario indicates that the already harsh conditions inside the egg capsules are expected to be magnified in the years to come, especially in populations at the border of their thermal envelope. Such a scenario promotes untimely hatching and smaller post-hatching body sizes, thus challenging the survival and fitness of early life stages.


Assuntos
Hipóxia Celular , Decapodiformes/fisiologia , Animais , Dióxido de Carbono/metabolismo , Mudança Climática , Decapodiformes/embriologia , Desenvolvimento Embrionário , Metabolismo Energético , Concentração de Íons de Hidrogênio , Oceanos e Mares , Pressão Parcial , Temperatura
16.
Front Physiol ; 14: 1244314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841313

RESUMO

Introduction: Temperature affects organisms' metabolism and ecological performance. Owing to climate change, sea warming constituting a severe source of environmental stress for marine organisms, since it increases at alarming rates. Rapid warming can exceed resilience of marine organisms leading to fitness loss and mortality. However, organisms can improve their thermal tolerance when briefly exposed to sublethal thermal stress (heat hardening), thus generating heat tolerant phenotypes. Methods: We investigated the "stress memory" effect caused by heat hardening on M. galloprovincialis metabolite profile of in order to identify the underlying biochemical mechanisms, which enhance mussels' thermal tolerance. Results: The heat hardening led to accumulation of amino acids (e.g., leucine, isoleucine and valine), including osmolytes and cytoprotective agents with antioxidant and anti-inflammatory properties that can contribute to thermal protection of the mussels. Moreover, proteolysis was inhibited and protein turnover regulated by the heat hardening. Heat stress alters the metabolic profile of heat stressed mussels, benefiting the heat-hardened individuals in increasing their heat tolerance compared to the non-heat-hardened ones. Discussion: These findings provide new insights in the metabolic mechanisms that may reinforce mussels' tolerance against thermal stress providing both natural protection and potential manipulative tools (e.g., in aquaculture) against the devastating climate change effects on marine organisms.

17.
Front Zool ; 9(1): 28, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23075125

RESUMO

INTRODUCTION: Ongoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated PCO2 (0.2 kPa CO2) at different levels of physiological organisation. RESULTS: For an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid-base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated PCO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher PCO2 was compensated for by intracellular bicarbonate accumulation. CONCLUSION: The partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial capacities under chronic hypercapnia may include a new metabolic equilibrium to meet the elevated energy demand for acid-base regulation. New set points of acid-base regulation under hypercapnia, visible at the systemic and intracellular level, indicate that N. rossii can at least in part acclimate to ocean warming and acidification. It remains open whether the reduced capacities of mitochondrial energy metabolism are adaptive or would impair population fitness over longer timescales under chronically elevated temperature and PCO2.

18.
J Exp Biol ; 215(Pt 17): 2992-3000, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22660779

RESUMO

In the eurythermal cuttlefish Sepia officinalis, performance depends on hearts that ensure systemic oxygen supply over a broad range of temperatures. We therefore aimed to identify adjustments in energetic cardiac capacity and underlying mitochondrial function supporting thermal acclimation and adaptation that could be crucial for the cuttlefish's competitive success in variable environments. Two genetically distinct cuttlefish populations were acclimated to 11, 16 and 21°C. Subsequently, skinned and permeabilised heart fibres were used to assess mitochondrial functioning by means of high-resolution respirometry and a substrate-inhibitor protocol, followed by measurements of cardiac citrate synthase and cytosolic enzyme activities. Temperate English Channel cuttlefish had lower mitochondrial capacities but larger hearts than subtropical Adriatic cuttlefish. Warm acclimation to 21°C decreased mitochondrial complex I activity in Adriatic cuttlefish and increased complex IV activity in English Channel cuttlefish. However, compensation of mitochondrial capacities did not occur during cold acclimation to 11°C. In systemic hearts, the thermal sensitivity of mitochondrial substrate oxidation was high for proline and pyruvate but low for succinate. Oxygen efficiency of catabolism rose as temperature changed from 11 to 21°C via shifts to oxygen-conserving oxidation of proline and pyruvate and via reduced relative proton leak. The changes observed for substrate oxidation, mitochondrial complexes, relative proton leak and heart mass improve energetic efficiency and essentially seem to extend tolerance to high temperatures and reduce associated tissue hypoxia. We conclude that cuttlefish sustain cardiac performance and, thus, systemic oxygen delivery over short- and long-term changes of temperature and environmental conditions by multiple adjustments in cellular and mitochondrial energetics.


Assuntos
Adaptação Fisiológica , Temperatura Corporal/fisiologia , Decapodiformes/fisiologia , Coração/fisiologia , Dinâmica Mitocondrial , Aclimatação/efeitos dos fármacos , Aclimatação/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Animais , Temperatura Corporal/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Citocromos c/metabolismo , Decapodiformes/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Coração/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Miocárdio/enzimologia , Oxirredução/efeitos dos fármacos , Prolina/farmacologia , Especificidade por Substrato/efeitos dos fármacos
19.
J Exp Biol ; 215(Pt 1): 29-43, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22162851

RESUMO

Rising levels of atmospheric CO(2) lead to acidification of the ocean and alter seawater carbonate chemistry, which can negatively impact calcifying organisms, including mollusks. In estuaries, exposure to elevated CO(2) levels often co-occurs with other stressors, such as reduced salinity, which enhances the acidification trend, affects ion and acid-base regulation of estuarine calcifiers and modifies their response to ocean acidification. We studied the interactive effects of salinity and partial pressure of CO(2) (P(CO2)) on biomineralization and energy homeostasis in juveniles of the eastern oyster, Crassostrea virginica, a common estuarine bivalve. Juveniles were exposed for 11 weeks to one of two environmentally relevant salinities (30 or 15 PSU) either at current atmospheric P(CO2) (∼400 µatm, normocapnia) or P(CO2) projected by moderate IPCC scenarios for the year 2100 (∼700-800 µatm, hypercapnia). Exposure of the juvenile oysters to elevated P(CO2) and/or low salinity led to a significant increase in mortality, reduction of tissue energy stores (glycogen and lipid) and negative soft tissue growth, indicating energy deficiency. Interestingly, tissue ATP levels were not affected by exposure to changing salinity and P(CO2), suggesting that juvenile oysters maintain their cellular energy status at the expense of lipid and glycogen stores. At the same time, no compensatory upregulation of carbonic anhydrase activity was found under the conditions of low salinity and high P(CO2). Metabolic profiling using magnetic resonance spectroscopy revealed altered metabolite status following low salinity exposure; specifically, acetate levels were lower in hypercapnic than in normocapnic individuals at low salinity. Combined exposure to hypercapnia and low salinity negatively affected mechanical properties of shells of the juveniles, resulting in reduced hardness and fracture resistance. Thus, our data suggest that the combined effects of elevated P(CO2) and fluctuating salinity may jeopardize the survival of eastern oysters because of weakening of their shells and increased energy consumption.


Assuntos
Dióxido de Carbono/metabolismo , Crassostrea/crescimento & desenvolvimento , Animais , Fenômenos Biomecânicos , Calcificação Fisiológica , Crassostrea/anatomia & histologia , Crassostrea/metabolismo , Metabolismo Energético , Ressonância Magnética Nuclear Biomolecular , Salinidade
20.
Artigo em Inglês | MEDLINE | ID: mdl-22314019

RESUMO

To further investigate the previously reported limited acclimation capacities of Antarctic marine stenotherms, the Antarctic mud clam, Laternula elliptica (King and Broderip, 1830-1831), was incubated at 3.0°C for 89days. The thermal windows of a suite of biochemical and physiological metrics that characterise tissue aerobic status, were then measured in response to acute temperature elevation (2-2.5°C increase per week). To test if acclimation had occurred at the higher temperature, results were compared with published data, from the preceding year, for L. elliptica which had been incubated at ambient temperature (0.0°C) and then subjected to the same acute temperature treatments. Incubation to 3.0°C led to a temperature induced increase of tissue aerobic status (reduced intracellular cCO(2) with increased O(2) consumption, PLA (phospho-L-arginine) and ATP). At the highest acute temperature (7.5°C) the increase in anaerobic pathways (summed acetate/succinate and propionate) was less after 3.0°C than 0.0°C incubation. No other metric shifted its reaction norm in response to acute temperature elevation and so whole animal acclimation had not occurred, even after 3months at 3.0°C. Combined with the constant mortality throughout the 3.0°C incubation period, these data suggest that the recorded physiological changes were either the early stages of acclimation or, more likely, time limited resistance mechanisms.


Assuntos
Bivalves/fisiologia , Aclimatação , Equilíbrio Ácido-Base , Nucleotídeos de Adenina/metabolismo , Análise de Variância , Exoesqueleto/anatomia & histologia , Animais , Regiões Antárticas , Arginina/metabolismo , Bivalves/anatomia & histologia , Bivalves/metabolismo , Temperatura Corporal , Dióxido de Carbono/metabolismo , Citrato (si)-Sintase/metabolismo , Temperatura Baixa , Frequência Cardíaca , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa