Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 57(21): 6342-6346, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29461645

RESUMO

m6 A is the most abundant internal modification in eukaryotic mRNA. It is introduced by METTL3-METTL14 and tunes mRNA metabolism, impacting cell differentiation and development. Precise transcriptome-wide assignment of m6 A sites is of utmost importance. However, m6 A does not interfere with Watson-Crick base pairing, making polymerase-based detection challenging. We developed a chemical biology approach for the precise mapping of methyltransferase (MTase) target sites based on the introduction of a bioorthogonal propargyl group in vitro and in cells. We show that propargyl groups can be introduced enzymatically by wild-type METTL3-METTL14. Reverse transcription terminated up to 65 % at m6 A sites after bioconjugation and purification, hence enabling detection of METTL3-METTL14 target sites by next generation sequencing. Importantly, we implemented metabolic propargyl labeling of RNA MTase target sites in vivo based on propargyl-l-selenohomocysteine and validated different types of known rRNA methylation sites.

4.
Nat Commun ; 15(1): 1388, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360910

RESUMO

Most genotoxic anticancer agents fail in tumors with intact DNA repair. Therefore, trabectedin, anagent more toxic to cells with active DNA repair, specifically transcription-coupled nucleotide excision repair (TC-NER), provides therapeutic opportunities. To unlock the potential of trabectedin and inform its application in precision oncology, an understanding of the mechanism of the drug's TC-NER-dependent toxicity is needed. Here, we determine that abortive TC-NER of trabectedin-DNA adducts forms persistent single-strand breaks (SSBs) as the adducts block the second of the two sequential NER incisions. We map the 3'-hydroxyl groups of SSBs originating from the first NER incision at trabectedin lesions, recording TC-NER on a genome-wide scale. Trabectedin-induced SSBs primarily occur in transcribed strands of active genes and peak near transcription start sites. Frequent SSBs are also found outside gene bodies, connecting TC-NER to divergent transcription from promoters. This work advances the use of trabectedin for precision oncology and for studying TC-NER and transcription.


Assuntos
Reparo por Excisão , Neoplasias , Humanos , Trabectedina , Transcrição Gênica , Medicina de Precisão , Reparo do DNA , Dano ao DNA , DNA/genética , Nucleotídeos , Quebras de DNA
5.
Nat Commun ; 9(1): 3785, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224724

RESUMO

Pseudomonas are a common cause of hospital-acquired infections that may be lethal. ADP-ribosyltransferase activities of Pseudomonas exotoxin-S and -T depend on 14-3-3 proteins inside the host cell. By binding in the 14-3-3 phosphopeptide binding groove, an amphipathic C-terminal helix of ExoS and ExoT has been thought to be crucial for their activation. However, crystal structures of the 14-3-3ß:ExoS and -ExoT complexes presented here reveal an extensive hydrophobic interface that is sufficient for complex formation and toxin activation. We show that C-terminally truncated ExoS ADP-ribosyltransferase domain lacking the amphipathic binding motif is active when co-expressed with 14-3-3. Moreover, swapping the amphipathic C-terminus with a fragment from Vibrio Vis toxin creates a 14-3-3 independent toxin that ADP-ribosylates known ExoS targets. Finally, we show that 14-3-3 stabilizes ExoS against thermal aggregation. Together, this indicates that 14-3-3 proteins activate exotoxin ADP-ribosyltransferase domains by chaperoning their hydrophobic surfaces independently of the amphipathic C-terminal segment.


Assuntos
Proteínas 14-3-3/química , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Proteínas 14-3-3/metabolismo , ADP Ribose Transferases/genética , Toxinas Bacterianas/genética , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/genética , Proteínas Ativadoras de GTPase/genética , Interações Hospedeiro-Patógeno , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Conformação Proteica , Domínios Proteicos , Pseudomonas aeruginosa/patogenicidade , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa