Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Trends Biochem Sci ; 49(4): 333-345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355393

RESUMO

Plasma membranes utilize free energy to maintain highly asymmetric, non-equilibrium distributions of lipids and proteins between their two leaflets. In this review we discuss recent progress in quantitative research enabled by using compositionally controlled asymmetric model membranes. Both experimental and computational studies have shed light on the nuanced mechanisms that govern the structural and dynamic coupling between compositionally distinct bilayer leaflets. This coupling can increase the membrane bending rigidity and induce order - or lipid domains - across the membrane. Furthermore, emerging evidence indicates that integral membrane proteins not only respond to asymmetric lipid distributions but also exhibit intriguing asymmetric properties themselves. We propose strategies to advance experimental research, aiming for a deeper, quantitative understanding of membrane asymmetry, which carries profound implications for cellular physiology.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Bicamadas Lipídicas/química , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo
2.
Bioessays ; 45(12): e2300116, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37712937

RESUMO

One persistent puzzle in the life sciences is the asymmetric lipid composition of the cellular plasma membrane: while the exoplasmic leaflet is enriched in lipids carrying predominantly saturated fatty acids, the cytoplasmic leaflet hosts preferentially lipids with (poly-)unsaturated fatty acids. Given the high energy requirements necessary for cells to maintain this asymmetry, the question naturally arises regarding its inherent benefits. In this paper, we propose asymmetry to represent a potential solution for harmonizing two conflicting requirements for the plasma membrane: first, the need to build a barrier for the uncontrolled influx or efflux of substances; and second, the need to form a fluid and dynamic two-dimensional substrate for signaling processes. We hence view here the plasma membrane as a composite material, where the exoplasmic leaflet is mainly responsible for the functional integrity of the barrier and the cytoplasmic leaflet for fluidity. We reinforce the validity of the proposed mechanism by presenting quantitative data from the literature, along with multiple examples that bolster our model.


Assuntos
Lipídeos de Membrana , Lipídeos de Membrana/química , Membrana Celular/metabolismo , Transporte Biológico
3.
Mol Pharm ; 21(4): 1768-1776, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381374

RESUMO

A better molecular understanding of the temperature-triggered drug release from lysolipid-based thermosensitive liposomes (LTSLs) is needed to overcome the recent setbacks in developing this important drug delivery system. Enhanced drug release was previously rationalized in terms of detergent-like effects of the lysolipid monostearyl lysophosphatidylcholine (MSPC), stabilizing local membrane defects upon LTSL lipid melting. This is highly surprising and here referred to as the 'lysolipid paradox,' because detergents usually induce the opposite effect─they cause leakage upon freezing, not melting. Here, we aim at better answers to (i) why lysolipid does not compromise drug retention upon storage of LTSLs in the gel phase, (ii) how lysolipids can enhance drug release from LTSLs upon lipid melting, and (iii) why LTSLs typically anneal after some time so that not all drug gets released. To this end, we studied the phase transitions of mixtures of dipalmitoylphosphatidylcholine (DPPC) and MSPC by a combination of differential scanning and pressure perturbation calorimetry and identified the phase structures with small- and wide-angle X-ray scattering (SAXS and WAXS). The key result is that LTSLs, which contain the standard amount of 10 mol % MSPC, are at a eutectic point when they release their cargo upon melting at about 41 °C. The eutectic present below 41 °C consists of a MSPC-depleted gel phase as well as small domains of a hydrocarbon chain interdigitated gel phase containing some 30 mol % MSPC. In these interdigitated domains, the lysolipid is stored safely without compromising membrane integrity. At the eutectic temperature, both the MSPC-depleted bilayer and interdigitated MSPC-rich domains melt at once to fluid bilayers, respectively. Intact, fluid membranes tolerate much less MSPC than interdigitated domains─where the latter have melted, the high local MSPC content causes transient pores. These pores allow for fast drug release. However, these pores disappear, and the membrane seals again as the MSPC distributes more evenly over the membrane so that its local concentration decreases below the pore-stabilizing threshold. We provide a pseudobinary phase diagram of the DPPC-MSPC system and structural and volumetric data for the interdigitated phase.


Assuntos
Bicamadas Lipídicas , Lipossomos , Lipossomos/química , Bicamadas Lipídicas/química , Espalhamento a Baixo Ângulo , Varredura Diferencial de Calorimetria , Difração de Raios X , 1,2-Dipalmitoilfosfatidilcolina/química
4.
Biophys J ; 122(12): 2445-2455, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37120716

RESUMO

We studied the mechanical leaflet coupling of prototypic mammalian plasma membranes using neutron spin-echo spectroscopy. In particular, we examined a series of asymmetric phospholipid vesicles with phosphatidylcholine and sphingomyelin enriched in the outer leaflet and inner leaflets composed of phosphatidylethanolamine/phosphatidylserine mixtures. The bending rigidities of most asymmetric membranes were anomalously high, exceeding even those of symmetric membranes formed from their cognate leaflets. Only asymmetric vesicles with outer leaflets enriched in sphingolipid displayed bending rigidities in conformity with these symmetric controls. We performed complementary small-angle neutron and x-ray experiments on the same vesicles to examine possible links to structural coupling mechanisms, which would show up in corresponding changes in membrane thickness. In addition, we estimated differential stress between leaflets originating either from a mismatch of their lateral areas or spontaneous curvatures. However, no correlation with asymmetry-induced membrane stiffening was observed. To reconcile our findings, we speculate that an asymmetric distribution of charged or H-bond forming lipids may induce an intraleaflet coupling, which increases the weight of hard undulatory modes of membrane fluctuations and hence the overall membrane stiffness.


Assuntos
Fosfatidilcolinas , Fosfolipídeos , Animais , Membrana Celular/química , Fosfolipídeos/química , Membranas , Fosfatidilcolinas/química , Esfingomielinas , Bicamadas Lipídicas/química , Mamíferos
5.
Small ; 19(28): e2206747, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026678

RESUMO

Bicontinuous cubic phases offer advantageous routes to a broad range of applied materials ranging from drug delivery devices to membranes. However, a priori design of molecules that assemble into these phases remains a technological challenge. In this article, a high-throughput synthesis of lipidoids that undergo protonation-driven self-assembly (PrSA) into liquid crystalline (LC) phases is conducted. With this screening approach, 12 different multi-tail lipidoid structures capable of assembling into the bicontinuous double gyroid phase are discovered. The large volume of small-angle X-ray scattering (SAXS) data uncovers unexpected design criteria that enable phase selection as a function of lipidoid headgroup size and architecture, tail length and architecture, and counterion identity. Surprisingly, combining branched headgroups with bulky tails forces lipidoids to adopt unconventional pseudo-disc conformations that pack into double gyroid networks, entirely distinct from other synthetic or biological amphiphiles within bicontinuous cubic phases. From a multitude of possible applications, two examples of functional materials from lipidoid liquid crystals are demonstrated. First, the fabrication of gyroid nanostructured films by interfacial PrSA, which are rapidly responsive to the external medium. Second, it is shown that colloidally-dispersed lipidoid cubosomes, for example, for drug delivery, are easily assembled using top-down solvent evaporation methods.

6.
Biophys J ; 121(5): 852-861, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35134334

RESUMO

We previously speculated that the synergistically enhanced antimicrobial activity of Magainin 2 and PGLa is related to membrane adhesion, fusion, and further membrane remodeling. Here we combined computer simulations with time-resolved in vitro fluorescence microscopy, cryoelectron microscopy, and small-angle X-ray scattering to interrogate such morphological and topological changes of vesicles at nanoscopic and microscopic length scales in real time. Coarse-grained simulations revealed formation of an elongated and bent fusion zone between vesicles in the presence of equimolar peptide mixtures. Vesicle adhesion and fusion were observed to occur within a few seconds by cryoelectron microscopy and corroborated by small-angle X-ray scattering measurements. The latter experiments indicated continued and time-extended structural remodeling for individual peptides or chemically linked peptide heterodimers but with different kinetics. Fluorescence microscopy further captured peptide-dependent adhesion, fusion, and occasional bursting of giant unilamellar vesicles a few seconds after peptide addition. The synergistic interactions between the peptides shorten the time response of vesicles and enhance membrane fusogenic and disruption properties of the equimolar mixture compared with the individual peptides.


Assuntos
Bicamadas Lipídicas , Fusão de Membrana , Membrana Celular/química , Microscopia Crioeletrônica , Bicamadas Lipídicas/química , Magaininas/química , Magaininas/farmacologia
7.
Biophys J ; 121(23): 4689-4701, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36258677

RESUMO

We previously reported that the synergistically enhanced antimicrobial activity of magainin 2 (MG2a) and PGLa is related to membrane adhesion and fusion. Here, we demonstrate that equimolar mixtures of MG2a and L18W-PGLa induce positive monolayer curvature stress and sense, at the same time, positive mean and Gaussian bilayer curvatures already at low amounts of bound peptide. The combination of both abilities-membrane curvature sensing and inducing-is most likely the base for the synergistically enhanced peptide activity. In addition, our coarse-grained simulations suggest that fusion stalks are promoted by decreasing the free-energy barrier for their formation rather than by stabilizing their shape. We also interrogated peptide partitioning as a function of lipid and peptide concentration using tryptophan fluorescence spectroscopy and peptide-induced leakage of dyes from lipid vesicles. In agreement with a previous report, we find increased membrane partitioning of L18W-PGLa in the presence of MG2a. However, this effect does not prevail to lipid concentrations higher than 1 mM, above which all peptides associate with the lipid bilayers. This implies that synergistic effects of MG2a and L18W-PGLa in previously reported experiments with lipid concentrations >1 mM are due to peptide-induced membrane remodeling and not their specific membrane partitioning.


Assuntos
Lipídeos , Magaininas/farmacologia
8.
J Membr Biol ; 255(4-5): 407-421, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35471665

RESUMO

We studied the transleaflet coupling of compositionally asymmetric liposomes in the fluid phase. The vesicles were produced by cyclodextrin-mediated lipid exchange and contained dipalmitoyl phosphatidylcholine (DPPC) in the inner leaflet and different mixed-chain phosphatidylcholines (PCs) as well as milk sphingomyelin (MSM) in the outer leaflet. In order to jointly analyze the obtained small-angle neutron and X-ray scattering data, we adapted existing models of trans-bilayer structures to measure the overlap of the hydrocarbon chain termini by exploiting the contrast of the terminal methyl ends in X-ray scattering. In all studied systems, the bilayer-asymmetry has large effects on the lipid packing density. Fully saturated mixed-chain PCs interdigitate into the DPPC-containing leaflet and evoke disorder in one or both leaflets. The long saturated acyl chains of MSM penetrate even deeper into the opposing leaflet, which in turn has an ordering effect on the whole bilayer. These results are qualitatively understood in terms of a balance of entropic repulsion of fluctuating hydrocarbon chain termini and van der Waals forces, which is modulated by the interdigitation depth. Monounsaturated PCs in the outer leaflet also induce disorder in DPPC despite vestigial or even absent interdigitation. Instead, the transleaflet coupling appears to emerge here from a matching of the inner leaflet lipids to the larger lateral lipid area of the outer leaflet lipids.


Assuntos
Ciclodextrinas , Esfingomielinas , Esfingomielinas/química , 1,2-Dipalmitoilfosfatidilcolina , Bicamadas Lipídicas/química , Lipossomos , Fosfatidilcolinas/química
9.
Phys Chem Chem Phys ; 24(37): 22778-22791, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36111816

RESUMO

In certain bacteria, phosphatidylethanolamine lipids (PEL) get largely replaced by phosphate-free ornithine lipids (OL) under conditions of phosphate starvation. It has so far been unknown how much these two lipid types deviate in their physicochemical properties, and how strongly bacteria thus have to adapt in order to compensate for the difference. Here, we use differential scanning calorimetry, X-ray scattering, and X-ray fluorescence to investigate the properties of OL with saturated C14 alkyl chains in mono- and bilayers. OL is found to have a greater tendency than chain-analogous PEL to form ordered structures and, in contrast to PEL, even a molecular superlattice based on a hydrogen bonding network between the headgroups. This superlattice is virtually electrically uncharged and persists over a wide pH range. Our results indicate that OL and PEL behave very differently in ordered single-component membranes but may behave more similarly in fluid multicomponent membranes.


Assuntos
Bicamadas Lipídicas , Fosfatidiletanolaminas , Varredura Diferencial de Calorimetria , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Lipídeos , Ornitina/análogos & derivados , Fosfatidiletanolaminas/química
10.
Faraday Discuss ; 232(0): 435-447, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34532723

RESUMO

We report on the response of asymmetric lipid membranes composed of palmitoyl oleoyl phosphatidylethanolamine and palmitoyl oleoyl phosphatidylglycerol, to interactions with the frog peptides L18W-PGLa and magainin 2 (MG2a), as well as the lactoferricin derivative LF11-215. In particular we determined the peptide-induced lipid flip-flop, as well as membrane partitioning of L18W-PGLa and LF11-215, and vesicle dye-leakage induced by L18W-PGLa. The ability of L18W-PGLa and MG2a to translocate through the membrane appears to correlate with the observed lipid flip-flop, which occurred at the fastest rate for L18W-PGLa. The higher structural flexibility of LF11-215 in turn allows this peptide to insert into the bilayers without detectable changes of membrane asymmetry. The increased vulnerability of asymmetric membranes to L18W-PGLa in terms of permeability, appears to be a consequence of tension differences between the compositionally distinct leaflets, but not due to increased peptide partitioning.


Assuntos
Peptídeos Antimicrobianos , Bicamadas Lipídicas , Membrana Celular , Magaininas
11.
Soft Matter ; 17(2): 222-232, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-32104874

RESUMO

Small-angle X-ray and neutron scattering are well-established, non-invasive experimental techniques to interrogate global structural properties of biological membrane mimicking systems under physiologically relevant conditions. Recent developments, both in bottom-up sample preparation techniques for increasingly complex model systems, and in data analysis techniques have opened the path toward addressing long standing issues of biological membrane remodelling processes. These efforts also include emerging quantitative scattering studies on live cells, thus enabling a bridging of molecular to cellular length scales. Here, we review recent progress in devising compositional models for joint small-angle X-ray and neutron scattering studies on diverse membrane mimics - with a specific focus on membrane structural coupling to amphiphatic peptides and integral proteins - and live Escherichia coli. In particular, we outline the present state-of-the-art in small-angle scattering methods applied to complex membrane systems, highlighting how increasing system complexity must be followed by an advance in compositional modelling and data-analysis tools.


Assuntos
Difração de Nêutrons , Nêutrons , Membrana Celular , Espalhamento a Baixo Ângulo , Difração de Raios X , Raios X
12.
Biophys J ; 118(3): 612-623, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31952806

RESUMO

We studied the synergistic mechanism of equimolar mixtures of magainin 2 (MG2a) and PGLa in phosphatidylethanolamine/phosphatidylglycerol mimics of Gram-negative cytoplasmic membranes. In a preceding article of this series, we reported on the early onset of parallel heterodimer formation of the two antimicrobial peptides already at low concentrations and the resulting defect formation in the membranes. Here, we focus on the structures of the peptide-lipid aggregates occurring in the synergistic regime at elevated peptide concentrations. Using a combination of calorimetric, scattering, electron microscopic, and in silico techniques, we demonstrate that the two peptides, even if applied individually, transform originally large unilamellar vesicles into multilamellar vesicles with a collapsed interbilayer spacing resulting from peptide-induced adhesion. Interestingly, the adhesion does not lead to a peptide-induced lipid separation of charged and charge-neutral species. In addition to this behavior, equimolar mixtures of MG2a and PGLa formed surface-aligned fibril-like structures, which induced adhesion zones between the membranes and the formation of transient fusion stalks in molecular dynamics simulations and a coexisting sponge phase observed by small-angle x-ray scattering. The previously reported increased leakage of lipid vesicles of identical composition in the presence of MG2a/PGLa mixtures is therefore related to a peptide-induced cross-linking of bilayers.


Assuntos
Bicamadas Lipídicas , Fusão de Membrana , Membrana Celular , Magaininas , Fosfatidilgliceróis
14.
Biophys J ; 117(10): 1858-1869, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31703802

RESUMO

We addressed the onset of synergistic activity of the two well-studied antimicrobial peptides magainin 2 (MG2a) and PGLa using lipid-only mimics of Gram-negative cytoplasmic membranes. Specifically, we coupled a joint analysis of small-angle x-ray and neutron scattering experiments on fully hydrated lipid vesicles in the presence of MG2a and L18W-PGLa to all-atom and coarse-grained molecular dynamics simulations. In agreement with previous studies, both peptides, as well as their equimolar mixture, were found to remain upon adsorption in a surface-aligned topology and to induce significant membrane perturbation, as evidenced by membrane thinning and hydrocarbon order parameter changes in the vicinity of the inserted peptide. These effects were particularly pronounced for the so-called synergistic mixture of 1:1 (mol/mol) L18W-PGLa/MG2a and cannot be accounted for by a linear combination of the membrane perturbations of two peptides individually. Our data are consistent with the formation of parallel heterodimers at concentrations below a synergistic increase of dye leakage from vesicles. Our simulations further show that the heterodimers interact via salt bridges and hydrophobic forces, which apparently makes them more stable than putatively formed antiparallel L18W-PGLa and MG2a homodimers. Moreover, dimerization of L18W-PGLa and MG2a leads to a relocation of the peptides within the lipid headgroup region as compared to the individual peptides. The early onset of dimerization of L18W-PGLa and MG2a at low peptide concentrations consequently appears to be key to their synergistic dye-releasing activity from lipid vesicles at high concentrations.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Lipídeos/química , Magaininas/metabolismo , Dimerização , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Fosfatidiletanolaminas , Fosfatidilgliceróis , Temperatura
15.
Biophys J ; 114(1): 146-157, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29320681

RESUMO

We measured the effect of intrinsic lipid curvature, J0, on structural properties of asymmetric vesicles made of palmitoyl-oleoyl-phosphatidylethanolamine (POPE; J0<0) and palmitoyl-oleoyl-phosphatidylcholine (POPC; J0∼0). Electron microscopy and dynamic light scattering were used to determine vesicle size and morphology, and x-ray and neutron scattering, combined with calorimetric experiments and solution NMR, yielded insights into leaflet-specific lipid packing and melting processes. Below the lipid melting temperature we observed strong interleaflet coupling in asymmetric vesicles with POPE inner bilayer leaflets and outer leaflets enriched in POPC. This lipid arrangement manifested itself by lipids melting cooperatively in both leaflets, and a rearrangement of lipid packing in both monolayers. On the other hand, no coupling was observed in vesicles with POPC inner bilayer leaflets and outer leaflets enriched in POPE. In this case, the leaflets melted independently and did not affect each other's acyl chain packing. Furthermore, we found no evidence for transbilayer structural coupling above the melting temperature of either sample preparation. Our results are consistent with the energetically preferred location of POPE residing in the inner leaflet, where it also resides in natural membranes, most likely causing the coupling of both leaflets. The loss of this coupling in the fluid bilayers is most likely the result of entropic contributions.


Assuntos
Bicamadas Lipídicas/química , Fenômenos Mecânicos , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química
16.
Biophys J ; 114(8): 1945-1954, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694871

RESUMO

Mixtures of the frog peptides magainin 2 and PGLa are well-known for their pronounced synergistic killing of Gram-negative bacteria. We aimed to gain insight into the underlying biophysical mechanism by interrogating the permeabilizing efficacies of the peptides as a function of stored membrane curvature strain. For Gram-negative bacterial-inner-membrane mimics, synergism was only observed when the anionic bilayers exhibited significant negative intrinsic curvatures imposed by monounsaturated phosphatidylethanolamine. In contrast, the peptides and their mixtures did not exhibit significant activities in charge-neutral mammalian mimics, including those with negative curvature, which is consistent with the requirement of charge-mediated peptide binding to the membrane. Our experimental findings are supported by computer simulations showing a significant decrease of the peptide-insertion free energy in membranes upon shifting intrinsic curvatures toward more positive values. The physiological relevance of our model studies is corroborated by a remarkable agreement with the peptide's synergistic activity in Escherichia coli. We propose that synergism is related to a lowering of a membrane-curvature-strain-mediated free-energy barrier by PGLa that assists membrane insertion of magainin 2, and not by strict pairwise interactions of the two peptides as suggested previously.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/metabolismo , Magaininas/farmacologia , Estresse Mecânico , Sequência de Aminoácidos , Antibacterianos/química , Fenômenos Biomecânicos/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Sinergismo Farmacológico , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Magaininas/química , Multimerização Proteica , Termodinâmica
17.
Biochim Biophys Acta ; 1858(10): 2512-2528, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26809025

RESUMO

Accurate details on the sampled atomistic resolution structures of lipid bilayers can be experimentally obtained by measuring C-H bond order parameters, spin relaxation rates and scattering form factors. These parameters can be also directly calculated from the classical atomistic resolution molecular dynamics simulations (MD) and compared to the experimentally achieved results. This comparison measures the simulation model quality with respect to 'reality'. If agreement is sufficient, the simulation model gives an atomistic structural interpretation of the acquired experimental data. Significant advance of MD models is made by jointly interpreting different experiments using the same structural model. Here we focus on phosphatidylcholine lipid bilayers, which out of all model membranes have been studied mostly by experiments and simulations, leading to the largest available dataset. From the applied comparisons we conclude that the acyl chain region structure and rotational dynamics are generally well described in simulation models. Also changes with temperature, dehydration and cholesterol concentration are qualitatively correctly reproduced. However, the quality of the underlying atomistic resolution structural changes is uncertain. Even worse, when focusing on the lipid bilayer properties at the interfacial region, e.g. glycerol backbone and choline structures, and cation binding, many simulation models produce an inaccurate description of experimental data. Thus extreme care must be applied when simulations are applied to understand phenomena where the interfacial region plays a significant role. This work is done by the NMRlipids Open Collaboration project running at https://nmrlipids.blogspot.fi and https://github.com/NMRLipids. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Colesterol/química , Imageamento por Ressonância Magnética , Fosfatidilcolinas/química
18.
Langmuir ; 33(20): 4948-4953, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28471667

RESUMO

We have synthesized unique siloxane phosphocholines and characterized their aggregates in aqueous solution. The siloxane phosphocholines form nearly monodisperse vesicles in aqueous solution without the need for secondary extrusion processes. The area/lipid, lipid volume, and bilayer thickness were determined from small-angle X-ray scattering experiments. The impetus for the spontaneous formation of unilamellar vesicles by these compounds is discussed.


Assuntos
Siloxanas/química , Bicamadas Lipídicas , Fosforilcolina , Lipossomas Unilamelares
19.
Langmuir ; 33(50): 14378-14388, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29160078

RESUMO

Membrane proteins usually need to be extracted from their native environment and separated from other membrane components for in-depth in vitro characterization. The use of styrene/maleic acid (SMA) copolymers to solubilize membrane proteins and their surrounding lipids into bilayer nanodiscs is an attractive approach toward this goal. We have recently shown that a diisobutylene/maleic acid (DIBMA) copolymer similarly solubilizes model and cellular membranes but, unlike SMA(3:1), has a mild impact on lipid acyl-chain order and thermotropic phase behavior. Here, we used fluorescence spectroscopy, small-angle X-ray scattering, size-exclusion chromatography, dynamic light scattering, and 31P nuclear magnetic resonance spectroscopy to examine the self-association of DIBMA and its membrane-solubilization properties against lipids differing in acyl-chain length and saturation. Although DIBMA is less hydrophobic than commonly used SMA(3:1) and SMA(2:1) copolymers, it efficiently formed lipid-bilayer nanodiscs that decreased in size with increasing polymer/lipid ratio while maintaining the overall thickness of the membrane. DIBMA fractions of different molar masses were similarly efficient in solubilizing a saturated lipid. Coulomb screening at elevated ionic strength or reduced charge density on the polymer at low pH enhanced the solubilization efficiency of DIBMA. The free-energy penalty for transferring phospholipids from vesicular bilayers into nanodiscs became more unfavorable with increasing acyl-chain length and unsaturation. Altogether, these findings provide a rational framework for using DIBMA in membrane-protein research by shedding light on the effects of polymer and lipid properties as well as experimental conditions on membrane solubilization.


Assuntos
Alcenos/química , Maleatos/química , Bicamadas Lipídicas
20.
Langmuir ; 33(15): 3731-3741, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28106399

RESUMO

We measured the transbilayer diffusion of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in large unilamellar vesicles, in both the gel (Lß') and fluid (Lα) phases. The choline resonance of headgroup-protiated DPPC exchanged into the outer leaflet of headgroup-deuterated DPPC-d13 vesicles was monitored using 1H NMR spectroscopy, coupled with the addition of a paramagnetic shift reagent. This allowed us to distinguish between the inner and outer bilayer leaflet of DPPC, to determine the flip-flop rate as a function of temperature. Flip-flop of fluid-phase DPPC exhibited Arrhenius kinetics, from which we determined an activation energy of 122 kJ mol-1. In gel-phase DPPC vesicles, flip-flop was not observed over the course of 250 h. Our findings are in contrast to previous studies of solid-supported bilayers, where the reported DPPC translocation rates are at least several orders of magnitude faster than those in vesicles at corresponding temperatures. We reconcile these differences by proposing a defect-mediated acceleration of lipid translocation in supported bilayers, where long-lived, submicron-sized holes resulting from incomplete surface coverage are the sites of rapid transbilayer movement.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa