Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Nano Lett ; 21(20): 8595-8601, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34644094

RESUMO

Polarization-sensitive optical coherence tomography (PS-OCT) reveals the subsurface microstructure of biological tissue and provides information regarding the polarization state of light backscattered from tissue. Complementing OCT's structural signal with molecular imaging requires strategies to simultaneously detect multiple exogenous contrast agents with high specificity in tissue. Specific detection of molecular probes enables the parallel visualization of physiological, cellular, and molecular processes. Here we demonstrate that, by combining PS-OCT and spectral contrast (SC)-OCT measurements, we can distinguish signatures of different gold nanobipyramids (GNBPs) in lymphatic vessels from the surrounding tissue and blood vessels in live mouse models. This technique could well be extended to other anisotropic nanoparticle-based OCT contrast agents and presents significant progress toward enabling OCT molecular imaging.


Assuntos
Nanopartículas , Tomografia de Coerência Óptica , Animais , Modelos Animais de Doenças , Ouro , Camundongos
2.
Proc Natl Acad Sci U S A ; 114(39): 10455-10460, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28900008

RESUMO

Antiangiogenic therapy with antibodies against VEGF (bevacizumab) or VEGFR2 (ramucirumab) has been proven efficacious in colorectal cancer (CRC) patients. However, the improvement in overall survival is modest and only in combination with chemotherapy. Thus, there is an urgent need to identify potential underlying mechanisms of resistance specific to antiangiogenic therapy and develop strategies to overcome them. Here we found that anti-VEGFR2 therapy up-regulates both C-X-C chemokine ligand 12 (CXCL12) and C-X-C chemokine receptor 4 (CXCR4) in orthotopic murine CRC models, including SL4 and CT26. Blockade of CXCR4 signaling significantly enhanced treatment efficacy of anti-VEGFR2 treatment in both CRC models. CXCR4 was predominantly expressed in immunosuppressive innate immune cells, which are recruited to CRCs upon anti-VEGFR2 treatment. Blockade of CXCR4 abrogated the recruitment of these innate immune cells. Importantly, these myeloid cells were mostly Ly6Clow monocytes and not Ly6Chigh monocytes. To selectively deplete individual innate immune cell populations, we targeted key pathways in Ly6Clow monocytes (Cx3cr1-/- mice), Ly6Chigh monocytes (CCR2-/- mice), and neutrophils (anti-Ly6G antibody) in combination with CXCR4 blockade in SL4 CRCs. Depletion of Ly6Clow monocytes or neutrophils improved anti-VEGFR2-induced SL4 tumor growth delay similar to the CXCR4 blockade. In CT26 CRCs, highly resistant to anti-VEGFR2 therapy, CXCR4 blockade enhanced anti-VEGFR2-induced tumor growth delay but specific depletion of Ly6G+ neutrophils did not. The discovery of CXCR4-dependent recruitment of Ly6Clow monocytes in tumors unveiled a heretofore unknown mechanism of resistance to anti-VEGF therapies. Our findings also provide a rapidly translatable strategy to enhance the outcome of anti-VEGF cancer therapies.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias Colorretais/terapia , Monócitos/imunologia , Neutrófilos/imunologia , Receptores CXCR4/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Antígenos Ly/metabolismo , Benzilaminas , Bevacizumab/farmacologia , Proliferação de Células , Quimiocina CXCL12/biossíntese , Ciclamos , Compostos Heterocíclicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/biossíntese , Células Tumorais Cultivadas , Ramucirumab
3.
Ann Plast Surg ; 82(4S Suppl 3): S173-S178, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30855384

RESUMO

BACKGROUND: Breast cancer-related lymphedema affects 700,000 breast cancer survivors in the United States. Although taxane-based chemotherapy regimens are commonly used in the treatment of breast cancer, the impact of taxanes on the lymphatic system remains poorly understood. This study aims to examine the influence of taxane-based chemotherapy on lymphatic function in breast cancer patients. METHODS: A retrospective review of a prospectively-maintained database was performed. Consecutive patients with node positive breast cancer who underwent preoperative indocyanine green (ICG) lymphangiograms were identified. Information including patient demographics, baseline measurements, cancer characteristics, and treatment information were retrieved. Preoperative ICG lymphangiography videos were analyzed and lymphatic contractility was quantified for each subject. Multiple regions of interest were selected on each lymphatic channel and signal intensity was recorded for 3 minutes to generate contractility curves. Each lymphatic contraction was identified using a novel, systematic, and algorithmic approach. RESULTS: Twenty-nine consecutive patients with unilateral node-positive breast cancer were included for analysis. Average patient age was 54.5 (13) years and mean BMI was 26.8 kg/m (4). The mean lymphatic contractility of patients who received taxane-based neoadjuvant chemotherapy was 0.7 contractions/minute (c/m) (n = 19) compared to 1.1 c/m in those who received no neoadjuvant therapy (n = 10), (P = 0.11). In subgroup analysis, patients who reported taxane induced neuropathy demonstrated significantly lower lymphatic contractility values than those who were asymptomatic or did not receive any chemotherapy (P = 0.018). CONCLUSIONS: In this study, we used a novel method for quantifying and evaluating lymphatic contractility rates in routine ICG lymphangiograms. Diminished lymphatic contractility was noted in patients who received taxane-based neoadjuvant chemotherapy compared with those who did not. Taxane-based neoadjuvant chemotherapy may adversely affect the lymphatic system in the breast cancer population. A larger patient cohort with longer follow-up time is needed to validate this finding and evaluate any potential association with breast cancer-related lymphedema development.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Sistema Linfático/efeitos dos fármacos , Taxoides/farmacologia , Taxoides/uso terapêutico , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos
4.
Proc Natl Acad Sci U S A ; 112(35): 10938-43, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283382

RESUMO

The ability of cells to sense and respond to physical forces has been recognized for decades, but researchers are only beginning to appreciate the fundamental importance of mechanical signals in biology. At the larger scale, there has been increased interest in the collective organization of cells and their ability to produce complex, "emergent" behaviors. Often, these complex behaviors result in tissue-level control mechanisms that manifest as biological oscillators, such as observed in fireflies, heartbeats, and circadian rhythms. In many cases, these complex, collective behaviors are controlled--at least in part--by physical forces imposed on the tissue or created by the cells. Here, we use mathematical simulations to show that two complementary mechanobiological oscillators are sufficient to control fluid transport in the lymphatic system: Ca(2+)-mediated contractions can be triggered by vessel stretch, whereas nitric oxide produced in response to the resulting fluid shear stress causes the lymphatic vessel to relax locally. Our model predicts that the Ca(2+) and NO levels alternate spatiotemporally, establishing complementary feedback loops, and that the resulting phasic contractions drive lymph flow. We show that this mechanism is self-regulating and robust over a range of fluid pressure environments, allowing the lymphatic vessels to provide pumping when needed but remain open when flow can be driven by tissue pressure or gravity. Our simulations accurately reproduce the responses to pressure challenges and signaling pathway manipulations observed experimentally, providing an integrated conceptual framework for lymphatic function.


Assuntos
Vasos Linfáticos/fisiologia , Estresse Mecânico , Cálcio/fisiologia , Humanos , Modelos Biológicos , Contração Muscular , Óxido Nítrico/fisiologia , Transdução de Sinais
5.
Semin Cell Dev Biol ; 38: 98-105, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25620792

RESUMO

Lymph nodes are initial sites for cancer metastasis in many solid tumors. However, their role in cancer progression is still not completely understood. Emerging evidence suggests that the lymph node microenvironment provides hospitable soil for the seeding and proliferation of cancer cells. Resident immune and stromal cells in the lymph node express and secrete molecules that may facilitate the survival of cancer cells in this organ. More comprehensive studies are warranted to fully understand the importance of the lymph node in tumor progression. Here, we will review the current knowledge of the role of the lymph node microenvironment in metastatic progression.


Assuntos
Linfonodos/patologia , Metástase Linfática/patologia , Neoplasias/imunologia , Neoplasias/patologia , Animais , Quimiocinas/imunologia , Humanos , Evasão da Resposta Imune , Monitorização Imunológica , Microambiente Tumoral
6.
Microcirculation ; 24(6)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28510992

RESUMO

OBJECTIVE: Lymph node metastases are a poor prognostic factor. Additionally, responses of lymph node metastasis to therapy can be different from the primary tumor. Investigating the physiologic lymph node blood vasculature might give insight into the ability of systemic drugs to penetrate the lymph node, and thus into the differential effect of therapy between lymph node metastasis and primary tumors. Here, we measured effective vascular permeability of lymph node blood vessels and attempted to increase chemotherapy penetration by increasing effective vascular permeability. METHODS: We developed a novel three-dimensional method to measure effective vascular permeability in murine lymph nodes in vivo. VEGF-A was systemically administered to increase effective vascular permeability. Validated high-performance liquid chromatography protocols were used to measure chemotherapeutic drug concentrations in untreated and VEGF-A-treated lymph nodes, liver, spleen, brain, and blood. RESULTS: VEGF-A-treated lymph node blood vessel effective vascular permeability (mean 3.83 × 10-7  cm/s) was significantly higher than untreated lymph nodes (mean 9.87 × 10-8  cm/s). No difference was found in lymph node drug accumulation in untreated versus VEGF-A-treated mice. CONCLUSIONS: Lymph node effective vascular permeability can be increased (~fourfold) by VEGF-A. However, no significant increase in chemotherapy uptake was measured by pretreatment with VEGF-A.


Assuntos
Antineoplásicos/farmacocinética , Permeabilidade Capilar , Linfonodos/irrigação sanguínea , Animais , Transporte Biológico/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Camundongos , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/farmacologia
7.
Annu Rev Biomed Eng ; 18: 125-58, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-26863922

RESUMO

Advances in our understanding of the structure and function of the lymphatic system have made it possible to identify its role in a variety of disease processes. Because it is involved not only in fluid homeostasis but also in immune cell trafficking, the lymphatic system can mediate and ultimately alter immune responses. Our rapidly increasing knowledge of the molecular control of the lymphatic system will inevitably lead to new and effective therapies for patients with lymphatic dysfunction. In this review, we discuss the molecular and physiological control of lymphatic vessel function and explore how the lymphatic system contributes to many disease processes, including cancer and lymphedema.


Assuntos
Linfangiogênese/fisiologia , Metástase Linfática/fisiopatologia , Sistema Linfático/fisiopatologia , Vasos Linfáticos/fisiopatologia , Linfedema/fisiopatologia , Modelos Biológicos , Neoplasias/fisiopatologia , Animais , Humanos
9.
PLoS Comput Biol ; 12(12): e1005231, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27935958

RESUMO

The lymphatic system is responsible for transporting interstitial fluid back to the bloodstream, but unlike the cardiovascular system, lacks a centralized pump-the heart-to drive flow. Instead, each collecting lymphatic vessel can individually contract and dilate producing unidirectional flow enforced by intraluminal check valves. Due to the large number and spatial distribution of such pumps, high-level coordination would be unwieldy. This leads to the question of how each segment of lymphatic vessel responds to local signals that can contribute to the coordination of pumping on a network basis. Beginning with elementary fluid mechanics and known cellular behaviors, we show that two complementary oscillators emerge from i) mechanical stretch with calcium ion transport and ii) fluid shear stress induced nitric oxide production (NO). Using numerical simulation and linear stability analysis we show that the newly identified shear-NO oscillator shares similarities with the well-known Van der Pol oscillator, but has unique characteristics. Depending on the operating conditions, the shear-NO process may i) be inherently stable, ii) oscillate spontaneously in response to random disturbances or iii) synchronize with weak periodic stimuli. When the complementary shear-driven and stretch-driven oscillators interact, either may dominate, producing a rich family of behaviors similar to those observed in vivo.


Assuntos
Transporte Biológico/fisiologia , Vasos Linfáticos/fisiologia , Modelos Biológicos , Animais , Cálcio/metabolismo , Camundongos , Óxido Nítrico/metabolismo
10.
FASEB J ; 29(9): 3668-77, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25977256

RESUMO

The angiopoietin (Ang) ligands are potential therapeutic targets for lymphatic related diseases, which include lymphedema and cancer. Ang-1 and Ang-2 functions are established, but those of Ang-4 are poorly understood. We used intravital fluorescence microscopy to characterize Ang-4 actions on T241 murine fibrosarcoma-associated vessels in mice. The diameters of lymphatic vessels draining Ang-4- or VEGF-C (positive control)-expressing tumors increased to 123 and 135 µm, respectively, and parental, mock-transduced (negative controls) and tumors expressing Ang-1 or Ang-2 remained at baseline (∼60 µm). Ang-4 decreased human dermal lymphatic endothelial cell (LEC) monolayer permeability by 27% while increasing human dermal blood endothelial cell (BEC) monolayer permeability by 200%. In vivo, Ang-4 stimulated a 4.5-fold increase in tumor-associated blood vessel permeability compared with control when measured using intravital quantitative multiphoton microscopy. Ang-4 activated receptor signaling in both LECs and BECs, evidenced by tyrosine kinase with Ig and endothelial growth factor homology domains-2 (TIE2) receptor, protein kinase B, and Erk1,2 phosphorylation detectable by immunoblotting. These data suggest that Ang-4 actions are mediated through cell-type-specific networks and that lymphatic vessel dilation occurs secondarily to increased vascular leakage. Ang-4 also promoted survival of LECs. Thus, blocking Ang-4 may prune the draining lymphatic vasculature and decrease interstitial fluid pressure (IFP) by reducing vascular permeability.


Assuntos
Angiopoietinas/metabolismo , Permeabilidade Capilar , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Angiopoietinas/genética , Animais , Células Endoteliais/patologia , Fibrossarcoma/genética , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Humanos , Vasos Linfáticos/patologia , Camundongos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo
12.
Angiogenesis ; 17(2): 419-27, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24201897

RESUMO

Radiation therapy after lymph node dissection increases the risk of developing painful and incurable lymphedema in breast cancer patients. Lymphedema occurs when lymphatic vessels become unable to maintain proper fluid balance. The sensitivity of lymphatic endothelial cells (LECs) to ionizing radiation has not been reported to date. Here, the radiosensitivity of LECs in vitro has been determined using clonogenic survival assays. The ability of various growth factors to alter LEC radiosensitivity was also examined. Vascular endothelial growth factor (VEGF)-C enhanced radiosensitivity when LECs were treated prior to radiation. VEGF-C-treated LECs exhibited higher levels of entry into the cell cycle at the time of radiation, with a greater number of cells in the S and G2/M phases. These LECs showed higher levels of γH2A.X-an indicator of DNA damage-after radiation. VEGF-C did not increase cell death as a result of radiation. Instead, it increased the relative number of quiescent LECs. These data suggest that abundant VEGF-C or lymphangiogenesis may predispose patients to radiation-induced lymphedema by impairing lymphatic vessel repair through induction of LEC quiescence.


Assuntos
Células Endoteliais/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Fator C de Crescimento do Endotélio Vascular/farmacologia , Adulto , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Células Endoteliais/efeitos dos fármacos , Humanos , Linfangiogênese/efeitos dos fármacos , Substâncias Protetoras/farmacologia
13.
Microvasc Res ; 96: 55-63, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24956510

RESUMO

Visualization of the lymphatic system is clinically necessary during diagnosis or treatment of many conditions and diseases; it is used for identifying and monitoring lymphedema, for detecting metastatic lesions during cancer staging and for locating lymphatic structures so they can be spared during surgical procedures. Imaging lymphatic anatomy and function also plays an important role in experimental studies of lymphatic development and function, where spatial resolution and accessibility are better. Here, we review technologies for visualizing and imaging the lymphatic system for clinical applications. We then describe the use of lymphatic imaging in experimental systems as well as some of the emerging technologies for improving these methodologies.


Assuntos
Sistema Linfático/fisiologia , Vasos Linfáticos/fisiologia , Linfedema/patologia , Neoplasias/patologia , Animais , Meios de Contraste/química , Diagnóstico por Imagem/métodos , Homeostase , Humanos , Metástase Linfática , Linfografia , Camundongos , Metástase Neoplásica , Tomografia por Emissão de Pósitrons , Cintilografia , Espectroscopia de Luz Próxima ao Infravermelho , Tomografia Computadorizada por Raios X , Ultrassonografia
14.
Pediatr Blood Cancer ; 61(3): 401-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24214028

RESUMO

Rapid advances in evidence-based treatment schedules are a hallmark of modern oncology. In rare neoplastic diseases, however, clinical expertise is hard to build and evidence based on randomized trials almost impossible to collect. Gorham disease is a rare form of lymphatic proliferation accompanied by osteolysis, which usually occurs in young adults. Despite the fact that the clinical course of Gorham disease is often devastating and occasionally fatal, insights into its biological background are sparse and standardized treatment unavailable. Interestingly, recent knowledge on the mechanisms of lymphangiogenesis may help elucidate the pathophysiology of Gorham disease and lead to novel treatment targets. Here, we discuss our current understanding of Gorham disease, discuss established and emerging therapeutic strategies, and attempt to frame a treatment rationale.


Assuntos
Osteólise Essencial/terapia , Biomarcadores/sangue , Reabsorção Óssea/etiologia , Humanos , Imuno-Histoquímica , Osteólise Essencial/etiologia , Osteólise Essencial/patologia
16.
Proc Natl Acad Sci U S A ; 108(46): 18784-9, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22065738

RESUMO

To trigger an effective immune response, antigen and antigen-presenting cells travel to the lymph nodes via collecting lymphatic vessels. However, our understanding of the regulation of collecting lymphatic vessel function and lymph transport is limited. To dissect the molecular control of lymphatic function, we developed a unique mouse model that allows intravital imaging of autonomous lymphatic vessel contraction. Using this method, we demonstrated that endothelial nitric oxide synthase (eNOS) in lymphatic endothelial cells is required for robust lymphatic contractions under physiological conditions. By contrast, under inflammatory conditions, inducible NOS (iNOS)-expressing CD11b(+)Gr-1(+) cells attenuate lymphatic contraction. This inhibition of lymphatic contraction was associated with a reduction in the response to antigen in a model of immune-induced multiple sclerosis. These results suggest the suppression of lymphatic function by the CD11b(+)Gr-1(+) cells as a potential mechanism of self-protection from autoreactive responses during on-going inflammation. The central role for nitric oxide also suggests that other diseases such as cancer and infection may also mediate lymphatic contraction and thus immune response. Our unique method allows the study of lymphatic function and its molecular regulation during inflammation, lymphedema, and lymphatic metastasis.


Assuntos
Terapia de Imunossupressão , Sistema Linfático/fisiologia , Vasos Linfáticos/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Antígeno CD11b/biossíntese , Sistema Imunitário , Inflamação , Cinética , Metástase Linfática , Vasos Linfáticos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia/métodos , Óxido Nítrico Sintase Tipo III/metabolismo , Oxazolona/farmacologia , Pele/efeitos dos fármacos
17.
Artigo em Inglês | MEDLINE | ID: mdl-38692743

RESUMO

The lymphatic system plays a crucial role in maintaining tissue fluid balance, immune surveillance, and the transport of lipids and macromolecules. Lymph is absorbed by initial lymphatics and then driven through lymph nodes and to the blood circulation by the contraction of collecting lymphatic vessels. Intraluminal valves in collecting lymphatic vessels ensure the unidirectional flow of lymph centrally. The lymphatic muscle cells that invest in collecting lymphatic vessels impart energy to propel lymph against hydrostatic pressure gradients and gravity. A variety of mechanical and biochemical stimuli modulate the contractile activity of lymphatic vessels. This review focuses on the recent advances in our understanding of the mechanisms involved in regulating and collecting lymphatic vessel pumping in normal tissues and the association between lymphatic pumping, infection, inflammatory disease states, and lymphedema.

18.
PNAS Nexus ; 3(6): pgae195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38827815

RESUMO

The lymphatic system plays a vital role in maintaining fluid balance in living tissue and serves as a pathway for the transport of antigen, immune cells, and metastatic cancer cells. In this study, we investigate how the movement of cells through a contracting lymphatic vessel differs from steady flow, using a lattice Boltzmann-based computational model. Our model consists of cells carried by flow in a 2D vessel with regularly spaced, bi-leaflet valves that ensure net downstream flow as the vessel walls contract autonomously in response to calcium and nitric oxide levels regulated by stretch and shear stress levels. The orientation of the vessel with respect to gravity, which may oppose or assist fluid flow, significantly modulates cellular motion due to its effect on the contraction dynamics of the vessel, even when the cells themselves are neutrally buoyant. Additionally, our model shows that cells are carried along with the flow, but when the vessel is actively contracting, they move faster than the average fluid velocity. We also find that the fluid forces cause significant deformation of the compliant cells, especially in the vicinity of the valves. Our study highlights the importance of considering the complex, transient flows near the valves in understanding cellular motion in lymphatic vessels.

19.
Sci Rep ; 14(1): 8767, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627467

RESUMO

Overly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling. The microvasculature was imaged non-invasively by bright-field and multi-photon laser microscopy, and optical coherence tomography pre-ablation and up to 30 days post-ablation. A theoretical model of network remodeling was developed to compute blood flow and intravascular pressure and identify vessels most susceptible to changes in flow direction. The skin microvascular remodeling patterns were consistent among the five specimens studied. Significant remodeling occurred at various time points, beginning as early as days 1-3 and continuing beyond day 20. The remodeling patterns included collateral development, venous and arterial reopening, and both outward and inward remodeling, with variations in the time frames for each mouse. In a representative specimen, immediately post-ablation, the average artery and vein diameters increased by 14% and 23%, respectively. At day 20 post-ablation, the maximum increases in arterial and venous diameters were 2.5× and 3.3×, respectively. By day 30, the average artery diameter remained 11% increased whereas the vein diameters returned to near pre-ablation values. Some arteries regenerated across the ablation sites via endothelial cell migration, while veins either reconnected or rerouted flow around the ablation site, likely depending on local pressure driving forces. In the intact network, the theoretical model predicts that the vessels that act as collaterals after flow disruption are those most sensitive to distant changes in pressure. The model results correlate with the post-ablation microvascular remodeling patterns.


Assuntos
Hemodinâmica , Terapia a Laser , Camundongos , Animais , Microvasos , Artérias , Modelos Teóricos
20.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712181

RESUMO

Despite significant strides in lymphatic system imaging, the timely diagnosis of lymphatic disorders remains elusive. One main cause for this is the absence of standardized, quantitative methods for real-time analysis of lymphatic contractility. Here, we address this unmet need by combining near-infrared lymphangiography imaging with an innovative analytical workflow. We combined data acquisition, signal processing, and statistical analysis to integrate traditional peak and-valley with advanced wavelet time-frequency analyses. Decision theory was used to evaluate the primary drivers of attributable variance in lymphangiography measurements to generate a strategy for optimizing the number of repeat measurements needed per subject to increase measurement reliability. This approach not only offers detailed insights into lymphatic pumping behaviors across species, sex and age, but also significantly boosts the reliability of these measurements by incorporating multiple regions of interest and evaluating the lymphatic system under various gravitational loads. By addressing the critical need for improved imaging and quantification methods, our study offers a new standard approach for the imaging and analysis of lymphatic function that can improve our understanding, diagnosis, and treatment of lymphatic diseases. The results highlight the importance of comprehensive data acquisition strategies to fully capture the dynamic behavior of the lymphatic system.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa