Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Evol Biol ; 37(2): 201-211, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38301664

RESUMO

In the early 1980s, the observation that Drosophila melanogaster larvae differed in their foraging behaviour laid the foundation for the work that would later lead to the discovery of the foraging gene (for) and its associated foraging phenotypes, rover and sitter. Since then, the molecular characterization of the for gene and our understanding of the mechanisms that maintain its phenotypic variants in the laboratory have progressed enormously. However, the significance and dynamics of such variation are yet to be investigated in nature. With the advent of next-generation sequencing, it is now possible to identify loci underlying the adaptation of populations in response to environmental variation. Here, I present the results of a genotype-environment association analysis that quantifies variation at the for gene among samples of D. melanogaster structured across space and time. These samples consist of published genomes of adult flies collected worldwide, and at least twice per site of collection (during spring and fall). Both an analysis of genetic differentiation based on Fs⁢t values and an analysis of population structure revealed an east-west gradient in allele frequency. This gradient may be the result of spatially varying selection driven by the seasonality of precipitation. These results support the hypothesis that different patterns of gene flow as expected under models of isolation by distance and potentially isolation by environment are driving genetic differentiation among populations. Overall, this study is essential for understanding the mechanisms underlying the evolution of foraging behaviour in D. melanogaster.


Assuntos
Clima , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Estações do Ano , Frequência do Gene , Variação Genética
2.
Proc Biol Sci ; 289(1976): 20220180, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35673871

RESUMO

Life-history theory suggests that the optimal reproductive effort of an organism is affected by factors such as energy acquisition and predation risk. The observation that some organisms actively search for their prey and others ambush them creates the expectation of different energy needs and predation risk associated with each foraging behaviour, the so-called 'foraging-mode paradigm'. Although this paradigm has been around for decades, the empirical evidence consists of conflicting results derived from competing models based on different mechanisms. For instance, models within the foraging-mode paradigm suggest that widely foraging females have evolved low reproductive effort, because a heavy reproductive load decreases their ability to escape from predators. By contrast, a long-standing prediction of evolutionary theory indicates that organisms subject to high extrinsic mortality, should invest more in reproduction. Here, we present the first partial evidence that widely foraging species have evolved greater reproductive effort than have sit-and-wait species, which we attribute to a larger body size and greater mortality among mobile foragers. According to our findings, we propose a theoretical model that could explain the observed pattern in lizards, suggesting ways for evolutionary ecologists to test mechanistic hypotheses at the intraspecific level.


Assuntos
Características de História de Vida , Lagartos , Animais , Tamanho Corporal , Feminino , Comportamento Predatório , Reprodução
3.
J Exp Biol ; 224(Pt 6)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753559

RESUMO

Theoretical models predict that lizards adjust their body temperature through behavioral thermoregulation as a function of food availability. However, behavioral thermoregulation is also governed by interactions among physiological and ecological factors other than food availability, such as hydration state, and sometimes it can even conflict with the locomotor activity of animals. Here, we aimed to investigate the role of food intake and hydration state on behavioral thermoregulation and voluntary locomotor activity in the lizard Tropidurus catalanensis We hypothesized that food intake can influence behavioral thermoregulation via an interaction with hydration state. We also hypothesized that lizards should endeavor to spend as little time as possible to reach their preferred body temperature to defend other physiological and/or ecological functions. We collected lizards in the field and brought them to the laboratory to measure the preferred temperature selected in a thermal gradient and the total distance traveled by them in fed and unfed conditions and with variable hydration state. Our results showed that food consumption was the most important predictor of preferred temperature. In contrast, either the hydration state alone or its interaction with food consumption did not have important effects on the lizards' thermal preference. Also, we found that the total distance traveled by lizards was not affected by food intake and was barely affected by the hydration state. We provide an experimental approach and a robust analysis of the factors that influence behavioral thermoregulation and locomotor activity in a tropical lizard.


Assuntos
Lagartos , Animais , Regulação da Temperatura Corporal , Ingestão de Alimentos , Locomoção , Temperatura
4.
J Exp Biol ; 224(Pt 2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33328289

RESUMO

If fitness optima for a given trait differ between males and females in a population, sexual dimorphism may evolve. Sex-biased trait variation may affect patterns of habitat use, and if the microhabitats used by each sex have dissimilar microclimates, this can drive sex-specific selection on thermal physiology. Nevertheless, tests of differences between the sexes in thermal physiology are uncommon, and studies linking these differences to microhabitat use or behavior are even rarer. We examined microhabitat use and thermal physiology in two ectothermic congeners that are ecologically similar but differ in their degree of sexual size dimorphism. Brown anoles (Anolis sagrei) exhibit male-biased sexual size dimorphism and live in thermally heterogeneous habitats, whereas slender anoles (Anolis apletophallus) are sexually monomorphic in body size and live in thermally homogeneous habitats. We hypothesized that differences in habitat use between the sexes would drive sexual divergence in thermal physiology in brown anoles, but not slender anoles, because male and female brown anoles may be exposed to divergent microclimates. We found that male and female brown anoles, but not slender anoles, used perches with different thermal characteristics and were sexually dimorphic in thermal tolerance traits. However, field-active body temperatures and behavior in a laboratory thermal arena did not differ between females and males in either species. Our results suggest that sexual dimorphism in thermal physiology can arise from phenotypic plasticity or sex-specific selection on traits that are linked to thermal tolerance, rather than from direct effects of thermal environments experienced by males and females.


Assuntos
Lagartos , Adaptação Fisiológica , Animais , Tamanho Corporal , Ecossistema , Feminino , Masculino , Caracteres Sexuais
5.
Biol Lett ; 15(11): 20190566, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31744411

RESUMO

Physiologists have primarily focused on two potential explanations for heat stress in animals-the classic model of molecular stability and an alternative model of oxygen limitation. Although the classic model has widespread support, the oxygen-supply model applies to many aquatic animals and some terrestrial ones. In particular, the embryonic stage of terrestrial animals seems most susceptible to oxygen limitation because embryos acquire oxygen from the atmosphere by diffusion rather than ventilation. We report experiments confirming the two conditions of the oxygen-supply model in Japanese quail embryos, Coturnix coturnix. Hypoxia (12% O2) greatly reduced the chance of survival at 47.5°C, and hyperoxia greatly improved the chance of survival at 48.5°C. This finding expands the scope of the oxygen-supply model to a terrestrial, endothermic species, suggesting that oxygen supply generally limits the heat tolerance of embryos.


Assuntos
Termotolerância , Animais , Coturnix , Hipóxia , Oxigênio , Consumo de Oxigênio
6.
Ecol Evol ; 12(5): e8885, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35509612

RESUMO

Much of life-history theory rests on fundamental assumptions about constraints on the acquisition and allocation of energy to growth and reproduction. In general, the allocation of energy to reproduction depends on maternal size, which in turn depends on environmental factors experienced throughout the life of the mother. Here, we used phylogenetic path analyses to evaluate competing hypotheses about the environmental and maternal drivers of reproductive traits in lizards. In doing so, we discovered that precipitation, rather than temperature, has shaped the evolution of the life history. Specifically, environments with greater rainfall have enabled the evolution of larger maternal size. In turn, these larger mothers produce larger clutches of larger offspring. However, annual precipitation has a negative direct effect on offspring size, despite the positive indirect effect mediated by maternal size. Possibly, the evolution of offspring size was driven by the need to conserve water in dry environments, because small organisms are particularly sensitive to water loss. Since we found that body size variation among lizards is related to a combination of climatic factors, mainly precipitation and perhaps primary production, our study challenges previous generalizations (e.g., temperature-size rule and Bergmann's rule) and suggests alternative mechanisms underlying the evolution of body size.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa