Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(12): 17672-17682, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32679972

RESUMO

The most common approach to optically generate and manipulate bubbles in liquids involves temperature gradients induced by CW lasers. In this work, we present a method to accomplish both the generation of microbubbles and their 3D manipulation in ethanol through optothermal forces. These forces are triggered by light absorption from a nanosecond pulsed laser (λ = 532 nm) at silver nanoparticles photodeposited at the distal end of a multimode optical fiber. Light absorbed from each laser pulse quickly heats up the silver-ethanol interface beyond the ethanol critical-point (∼ 243 °C) before the heat diffuses through the liquid. Therefore, the liquid achieves a metastable state and owing to spontaneous nucleation converted to a vapor bubble attached to the optical fiber. The bubble grows with semi-spherical shape producing a counterjet in the final stage of the collapse. This jet reaches the hot nanoparticles vaporizing almost immediately and ejecting a microbubble. This microbubble-generation mechanism takes place with every laser pulse (10 kHz repetition rate) leading to the generation of a microbubbles stream. The microbubbles' velocities decrease as they move away from the optical fiber and eventually coalesce forming a larger bubble. The larger bubble is attracted to the optical fiber by the Marangoni force once it reaches a critical size while being continuously fed with each bubble of the microbubbles stream. The balance of the optothermal forces owing to the laser-pulse drives the 3D manipulation of the main bubble. A complete characterization of the trapping conditions is provided in this paper.

2.
Opt Express ; 26(6): 6653-6662, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609352

RESUMO

The generation and manipulation of microbubbles by means of temperature gradients induced by low power laser radiation is presented. A laser beam (λ = 1064 nm) is divided into two equal parts and coupled to two multimode optical fibers. The opposite ends of each fiber are aligned and separated a distance D within an ethanol solution. Previously, silver nanoparticles were photo deposited on the optical fibers ends. Light absorption at the nanoparticles produces a thermal gradient capable of generating a microbubble at the optical fibers end in non-absorbent liquids. The theoretical and experimental studies carried out showed that by switching the thermal gradients, it is possible to generate forces in opposite directions, causing the migration of microbubbles from one fiber optic tip to another. Marangoni force induced by surface tension gradients in the bubble wall is the driving force behind the manipulation of microbubbles. We estimated a maximum Marangoni force of 400nN for a microbubble with a radius of 110 µm.

3.
J Opt Soc Am A Opt Image Sci Vis ; 31(1): 124-34, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24561947

RESUMO

A high-precision and fast algorithm for computation of Jacobi-Fourier moments (JFMs) is presented. A fast recursive method is developed for the radial polynomials that occur in the kernel function of the JFMs. The proposed method is numerically stable and very fast in comparison with the conventional direct method. Moreover, the algorithm is suitable for computation of the JFMs of the highest orders. The JFMs are generic expressions to generate orthogonal moments changing the parameters α and ß of Jacobi polynomials. The quality of the description of the proposed method with α and ß parameters known is studied. Also, a search is performed of the best parameters, α and ß, which significantly improves the quality of the reconstructed image and recognition. Experiments are performed on standard test images with various sets of JFMs to prove the superiority of the proposed method in comparison with the direct method. Furthermore, the proposed method is compared with other existing methods in terms of speed and accuracy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa