Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Cell Biochem ; 476(9): 3253-3260, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33886061

RESUMO

Pathological cardiac hypertrophy is associated with many diseases including hypertension. Recent studies have identified important roles for microRNAs (miRNAs) in many cardiac pathophysiological processes, including the regulation of cardiomyocyte hypertrophy. However, the role of miR-145-5p in the cardiac setting is still unclear. In this study, H9C2 cells were overexpressed with microRNA-145-5p, and then treated with Ang-II for 24 h, to study the effect of miR-145-5p on Ang-II-induced myocardial hypertrophy in vitro. Results showed that Ang-II treatment down-regulated miR-145-5p expression were revered after miR-145-5p overexpression. Based on results of bioinformatics algorithms, paxillin was predicted as a candidate target gene of miR-145-5p, luciferase activity assay revealed that the luciferase activity of cells was substantial downregulated the following co-transfection with wild paxillin 3'UTR and miR-145-5p compared to that in scramble control, while the inhibitory effect of miR-145-5p was abolished after transfection of mutant paxillin 3'UTR. Additionally, overexpression of miR-145-5p markedly inhibited activation of Rac-1/ JNK /c-jun/ NFATc3 and ANP expression and induced SIRT1 expression in Ang-II treated H9c2 cells. Jointly, our study suggested that miR-145-5p inhibited cardiac hypertrophy by targeting paxillin and through modulating Rac-1/ JNK /c-jun/ NFATc3/ ANP / Sirt1 signaling, therefore proving novel downstream molecular pathway of miR-145-5p in cardiac hypertrophy.


Assuntos
Angiotensina II/toxicidade , Cardiomegalia/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Mioblastos Cardíacos/efeitos dos fármacos , Paxilina/antagonistas & inibidores , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Vasoconstritores/toxicidade , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
Eur J Nutr ; 60(6): 3211-3223, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33555373

RESUMO

PURPOSE: Diabetes mellitus (DM) leads to disorders such as cardiac hypertrophy, cardiac myocyte apoptosis, and cardiac fibrosis. Previous studies have shown that Lactobacillus reuteri GMNL-263 decreases cardiomyopathy by reducing inflammation. In this study, we investigated the potential benefit of GMNL-263 supplementation in treating diabetes-induced cardiomyocytes in rats with DM. METHODS: Five-week-old male Wistar rats were randomly divided into three groups, control, DM, and rats with DM treated with different dosages of L. reuteri GMNL-263. After undergoing treatment for 4 weeks, all rats were euthanized for further analysis. RESULTS: We observed that cardiac function and structure of rats with DM was rescued by GMNL-263. Activation of toll-like receptor 4 (TLR4)-related inflammatory, hypertrophic, and fibrotic signaling pathways in the hearts of rats with DM was reduced by treatment with GMNL-263. CONCLUSION: Our findings demonstrate that GMNL-263 inhibited diabetes-induced cardiomyocytes via the repression of the TLR4 pathway. Moreover, these findings suggest that treatment with high-dose GMNL-263 could be a precautionary therapy for reducing the diabetes-induced cardiomyopathy.


Assuntos
Cardiomiopatias , Diabetes Mellitus Experimental , Limosilactobacillus reuteri , Probióticos , Animais , Cardiomiopatias/terapia , Diabetes Mellitus Experimental/terapia , Temperatura Alta , Masculino , Miócitos Cardíacos , Ratos , Ratos Wistar , Receptor 4 Toll-Like/genética
3.
Environ Toxicol ; 36(6): 1021-1030, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33475235

RESUMO

The aim of this study was to investigate the effects of longan flower (LF) water extract on cardiac apoptotic and survival pathways in rat models of fructose-induced metabolic syndrome. The study findings revealed that the levels of glucose, insulin, triglyceride, and cholesterol and TUNEL-positive apoptotic cells were significantly increased in the HF group compared with the control group; whereas, the levels were decreased in the HFLF group. The expressions of Fas, FADD, and activated caspases 8 and 3, as well as the expressions of Bax, Bak, Bax/Bcl-2, Bak/Bcl-xL, cytosolic cytochrome c, and activated caspases 9 and 3 were increased in the HF group were significantly reversed in HFLF administrated group. Furthermore, LF extract increased IGF-1R, p-PI3K, p-Akt, Bcl-2, and Bcl-xL expression compared to HF group. Taken together, the present findings help identify LF as a potential cardioprotective agent that can be effectively used in treating fructose-induced metabolic syndrome.


Assuntos
Síndrome Metabólica , Animais , Apoptose , Flores , Frutose/toxicidade , Síndrome Metabólica/induzido quimicamente , Miocárdio , Proteínas Proto-Oncogênicas c-bcl-2 , Ratos , Sapindaceae , Proteína X Associada a bcl-2 , Receptor fas
4.
Environ Toxicol ; 36(8): 1567-1575, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33929070

RESUMO

Habitual chewing of areca nut increases the risk of cardiovascular disease mortality, but less report demonstrate the toxic mechanism of areca nut on heart. To investigate toxicity of areca nut on cardiomyocytes, we induced the heart injury with arecoline to evaluate the acute damage of areca nut on heart. Different concentrations of are coline (lowdosage: 5 mg/kg/day and high dosage 50 mg/kg/day) were injected into Sprague-Dawley rat via intra-peritoneal method for 21 days to create negative effects of arecoline on cardiomyocyte. Themyocardial architecture of the rat heart was observed. The arecoline-induced apoptotic proteins were analysed via western blotting. The myocardialarchitecture of heart was injured with arecoline and TUNEL stain was also shown are coline-induced cardiac apoptosis. Arecoline promoted the protein expression of both Fas dependent snd mitochondrial dependent apoptosis. In summary, arecoline induces cardiac toxicity and apoptosis by inducing both death receptor and mitochondria-dependent apoptotic pathways on heart.


Assuntos
Areca , Arecolina , Animais , Proteína Ligante Fas , Extratos Vegetais , Ratos , Ratos Sprague-Dawley
5.
Environ Toxicol ; 36(7): 1466-1475, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33881220

RESUMO

In aging hypertensive conditions, deterioration of insulin-like growth factor 1 receptor (IGF1R) cause a pathological impact on hypertensive hearts with an increased Ang II level. Recovering these adverse conditions through transplanted adipose-derived stem cells is a challenging approach. Moreover, Danggui, a Traditional Chinese medicine (TCM), is used for the treatment of cardioprotective effects. In this study, to evaluate whether the combined effect of MSCs and TCM can recover the cardiac function in late-stage hypertension rats. We observed that lower dose of Danggui crude extract treatment showed an increased level of cell viability with maintained stemness properties and growth rate in rat adipose-derived stem cells (rADSCs). Further, we cocultured the H9c2 cells with rADSCs and the results revealed that Danggui-treated MSCs enhanced the IGF1R expression and attenuated the hypertrophy in H9c2 cells against Ang II challenge by immunoblot and rhodamine-phalloidin staining. In addition, Danggui crude extract was also quantified and characterized by HPLC and LC-MS analysis. Furthermore, the in vivo study was performed by considering 11 months old rats (n = 7). Importantly, the oral administration of Danggui crude extract with stem cells intravenous injection in SHR-D-ADSCs group showed a combination effect to augment the cardiac function through enhancement of ejection fraction, fractional shortening, contractility function in the late-stage hypertension conditions. We have also observed a decreased apoptosis rate in the heart tissue of SHR-D-ADSCs group. Taken together, these results indicate that the combinatorial effects of Danggui crude extract and stem cell therapy enhanced cardiac function in late-stage SHR rats.


Assuntos
Hipertensão , Fator de Crescimento Insulin-Like I , Animais , Ratos , Ratos Endogâmicos SHR , Células-Tronco , Regulação para Cima
6.
J Cell Physiol ; 235(4): 3539-3547, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31584202

RESUMO

Cardiac hypertrophy is a common phenomenon observed in progressive heart disease associated with heart failure. Insulin-like growth factor receptor II (IGF-IIR) has been much implicated in myocardial hypertrophy. Our previous studies have found that increased activities of signaling mediators, such as calcium/calmodulin-dependent protein kinase II (CaMKII) and calcineurin induces pathological hypertrophy. Given the critical roles played by CaMKII and calcineurin signaling in the progression of maladaptive hypertrophy, we anticipated that inhibition of CaMKII and calcineurin signaling may attenuate IGF-IIR-induced cardiac hypertrophy. The current study, therefore, investigated the effects of IGF-IIR activation on the CaMKII and calcineurin signaling and whether the combinatorial inhibition of the CaMKIIδ and calcineurin signaling could ameliorate IGF-IIR-induced pathological hypertrophy. In the present study, we induced IGF-IIR through the cardiomyocyte-specific transduction of IGFIIY27L via adeno-associated virus 2 (AAV2) to evaluate its effects on cardiac hypertrophy. Interestingly, it was observed that the activation of IGF-IIR signaling through IGFIIY27L induces significant hypertrophy of the myocardium and increased cardiac apoptosis and fibrosis. Moreover, we found that Leu27 IGF-II significantly induced calcineurin and CaMKII expression. Furthermore and importantly, the combinatorial treatment with CaMKII and calcineurin inhibitors significantly alleviates IGF-IIR-induced hypertrophic responses. Thus, it could be envisaged that the inhibition of IGF-IIR may serve as a promising candidate for attenuating maladaptive hypertrophy. Both calcineurin and CaMKII could be valuable targets for developing treatment strategies against hypertension-induced cardiomyopathies.


Assuntos
Calcineurina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cardiomegalia/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Receptor IGF Tipo 2/genética , Animais , Apoptose/genética , Calcineurina/efeitos dos fármacos , Inibidores de Calcineurina/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Cardiomegalia/genética , Cardiomegalia/patologia , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/patologia , Fator de Crescimento Insulin-Like II/genética , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos
7.
Biochem Biophys Res Commun ; 532(3): 347-354, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32888650

RESUMO

Hypoxic preconditioning is a well-known strategy to improve the survival and therapeutic potential of stem cells against various challenges including hemodynamic and neurohormonal modulations. However, the mechanism involved in hypoxia-induced benefits on stem cells is still ambiguous. In pathological hypertension, the elevation of the neurohormonal mediator Angiotensin II (Ang II) causes the adverse effects to stem cells. In this study, we investigate the effect and mechanism of action of short term hypoxia-inducible miRNA in suppressing the effects of AngII on stem cells. According to the results obtained, Ang II affects the normal cell cycle and triggers apoptosis in rADSCs with a corresponding increase in the expression of cell death-inducing p53 target 1 (CDIP1) protein. However, the short term hypoxia-inducible miRNA-miR-210-3p was found to target CDIP1 and reduce their levels upon the Ang II challenge. CDIP1 induces stress-mediated apoptosis involving the extrinsic apoptosis pathway via Bid/Bax/cleaved caspase3 activation. Administration of mimic miR-210-3p targets CDIP1 mRNA by binding to the 3' UTR region as confirmed by dual luciferase assay and also reduced Ang II-induced mitochondrial ROS accumulation as analyzed by MitoSOX staining. Moreover, the present study demonstrates the mechanism of miR-210-3p in the regulation of Ang II-induced CDIP1-associated apoptotic pathway in rADSCs.


Assuntos
Angiotensina II/farmacologia , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Tecido Adiposo/citologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Pontos de Checagem do Ciclo Celular , Hipóxia Celular , Proliferação de Células , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
8.
J Cell Biochem ; 120(10): 16956-16966, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31104312

RESUMO

Cardiotoxicity by doxorubicin hampers its therapeutic potential as an anticancer drug, but mechanisms leading to cardiotoxicity remain contentious. Through this study, the functional contribution of insulin-like growth factor receptor type II α (IGF-IIRα) which is a novel stress-inducible protein was explored in doxorubicin-induced cardiac stress. Employing both in vitro H9c2 cells and in vivo transgenic rat models (SD-TG [IGF-IIRα]) overexpressing IGF-IIRα specifically in heart, we found that IGF-IIRα leads to cardiac structural abnormalities and functional perturbations that were severely aggravated by doxorubicin-induced cardiac stress. Overexpression of IGF-IIRα leads to cumulative elevation of stress associated cardiac hypertrophy and apoptosis factors. There was a significant reduction of survival associated proteins p-Akt and estrogen receptor ß/α, and abnormal elevation of cardiac hypertrophy markers such as atrial natriuretic peptide, cardiac troponin-I, and apoptosis-inducing agents such as p53, Bax, and cytochrome C, respectively. IGF-IIRα also altered the expressions of AT1R, ERK1/2, and p38 proteins. Besides, IGF-IIRα also increased the reactive oxygen species production in H9c2 cells which were markedly aggravated by doxorubicin treatment. Together, we showed that IGF-IIRα is a novel stress-induced protein that perturbed cardiac homeostasis and cumulatively exacerbated the doxorubicin-induced cardiac injury that perturbed heart functions and ensuing cardiomyopathy.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiomegalia/induzido quimicamente , Cardiomiopatias/induzido quimicamente , Doxorrubicina/toxicidade , Cardiopatias Congênitas/induzido quimicamente , Receptor IGF Tipo 2/biossíntese , Animais , Apoptose/efeitos dos fármacos , Cardiotoxicidade/patologia , Linhagem Celular , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Coração/anatomia & histologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Receptor IGF Tipo 2/genética , Transdução de Sinais/efeitos dos fármacos
9.
Int J Mol Sci ; 20(17)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480672

RESUMO

Cardiovascular diseases have a high prevalence worldwide and constitute the leading causes of mortality. Recently, malfunctioning of ß-catenin signaling has been addressed in hypertensive heart condition. Ang-II is an important mediator of cardiovascular remodeling processes which not only regulates blood pressure but also leads to pathological cardiac changes. However, the contribution of Ang-II/ß-catenin axis in hypertrophied hearts is ill-defined. Employing in vitro H9c2 cells and in vivo spontaneously hypertensive rats (SHR) cardiac tissue samples, western blot analysis, luciferase assays, nuclear-cytosolic protein extracts, and immunoprecipitation assays, we found that under hypertensive condition ß-catenin gets abnormally induced that co-activated LEF1 and lead to cardiac hypertrophy changes by up-regulating the IGF-IIR signaling pathway. We identified putative LEF1 consensus binding site on IGF-IIR promoter that could be regulated by ß-catenin/LEF1 which in turn modulate the expression of cardiac hypertrophy agents. This study suggested that suppression of ß-catenin expression under hypertensive condition could be exploited as a clinical strategy for cardiac pathological remodeling processes.


Assuntos
Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Receptor IGF Tipo 2/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Angiotensina II , Animais , Biomarcadores/metabolismo , Cardiomegalia/patologia , Núcleo Celular/metabolismo , Fator de Transcrição GATA4/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Regiões Promotoras Genéticas/genética , Proteína Quinase C-alfa/metabolismo , Ratos Endogâmicos SHR
10.
J Cell Physiol ; 233(9): 7134-7142, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29574877

RESUMO

Irinotecan (CPT11) and Oxaliplatin have been used in combination with fluorouracil and leucovorin for treating colorectal cancer. However, the efficacy of these drugs is reduced due to various side effects and drug resistance. Fisetin, a hydroxyflavone possess anti-proliferative, anti-cancer, anti-inflammatory, and antioxidant activity against various types of cancers. Apart from that, fisetin has been shown to induce cytotoxic effects when combined with other known chemotherapeutic drugs. In this study, we aimed to investigate whether Fisetin was capable of sensitizing both Irinotecan and Oxaliplatin resistance colon cancer cells and explored the possible signaling pathways involved using In vitro and In vivo models. The results showed that Fisetin treatment effectively inhibited cell viability and apoptosis of CPT11-LoVo cells than Oxaliplatin (OR) and parental LoVo cancer cells. Western blot assays suggested that apoptosis was induced by fisetin administration, promoting Caspase-8, and Cytochrome-C expressions possibly by inhibiting aberrant activation of IGF1R and AKT proteins. Furthermore, fisetin inhibited tumor growth in athymic nude mouse xenograft model. Overall, our results provided a basis for Fisetin as a promising agent to treat parental as well as chemoresistance colon cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonoides/farmacologia , Irinotecano/farmacologia , Oxaliplatina/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo , Flavonóis , Masculino , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Environ Toxicol ; 33(4): 508-513, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29383833

RESUMO

Heart failure is one of the complications related to periodontal disease. In addition to drugs or herbal medicines, stem cell therapy shows potential in the treatment of cardiomyopathy. This study investigates if stem cells exhibit beneficial effects on cardiomyocyte damage induced by porphyromonas gingivalis endotoxin (Pg-LPS). From the experimental results we find that Pg-LPS reduce cardiomyocyte viability via the activation of apoptosis, hypertrophy, fibrosis and MAPK signaling. Pg-LPS damaged cardiomyocytes co-cultured with adipose-derived stem cells (ADSC) increases cardiomyocyte viability through suppressing the pathological markers described above. Further evidence implies that survival marker, IGF1, secreted from ADSC, may play an important role in the Pg-LPS induced protective effect on cardiomyocyte damage.


Assuntos
Endotoxinas/metabolismo , Miócitos Cardíacos/citologia , Porphyromonas gingivalis/metabolismo , Células-Tronco/fisiologia , Tecido Adiposo/citologia , Animais , Apoptose , Tamanho Celular , Células Cultivadas , Técnicas de Cocultura , Endotoxinas/toxicidade , Fibrose , Humanos , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases , Ratos , Células-Tronco/citologia
12.
Int J Med Sci ; 13(8): 569-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27499689

RESUMO

High-calorie diet-induced obesity leads to cardiomyocyte dysfunction and apoptosis. Impaired regulation of epididymal fat content in obese patients has been known to increase the risk of cardiac injury. In our study, a lactic acid bacteria, Lactobacillus reuteri GMNL-263, was evaluated for its potential to reduce body weight and body fat ratio and to prevent heart injury in rats with high-fat diet-induced obesity. Lactic acid bacteria supplementation restored the cardiac function and decreased the physiological changes in the heart of the obese rats. In addition, the Fas/Fas-associated protein pathway-induced caspase 3/e Poly polymerase mediated apoptosis in the cardiomyocytes of the obese rats was reversed in the Lr263-treated rats. These results reveal that fed with Lr-263 reduces body fat ratio, inhibits caspase 3-mediated apoptosis and restores cardiac function in obese rats through recovery of ejection fraction and fractional shortening. Our results indicated that the administration of Lr263 lactic acid bacteria can significantly down-regulate body fat and prevent cardiomyocyte injury in obese rats.


Assuntos
Epididimo/fisiopatologia , Limosilactobacillus reuteri/metabolismo , Obesidade/terapia , Probióticos/administração & dosagem , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/microbiologia , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Suplementos Nutricionais , Epididimo/efeitos dos fármacos , Epididimo/crescimento & desenvolvimento , Epididimo/microbiologia , Temperatura Alta , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Obesidade/metabolismo , Obesidade/microbiologia , Ratos
13.
Chin J Physiol ; 59(6): 323-330, 2016 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-27817194

RESUMO

Increased serum norepinephrine level is one of pathological processes relating to heart disease (HD). Estrogens are considered as potential therapeutics for the treatment of HD; however, estrogen supplementation shows some side-effects, such as increasing the risk of developing breast, endometrial and ovarian cancers. This study investigated the cardio-protective effects of daidzein (Dai), a selective estrogen receptor modulator (SERM) from soy bean extract, in H9c2 cardiomyoblast cells treated with isoproterenol (ISO), a norepinephrine analog. In this in vitro model, H9c2 cells treated with Dai at different concentrations showed no statistical difference in cell viability. TdT-mediated digoxigenin-dUTP nick-end labeling (TUNEL) data and western blotting results indicated that Dai treated-H9c2 cells recovered from the damage induced by ISO. The recovery effects of Dai on ISO-induced damage were blocked by inhibition of Akt activation through adding Akt inhibitor. On the other hand, the fold changes of phosphorylated Akt (p-Akt)/Akt normalized with the control for con, 0.25, 0.5, 1, 3 and 24 h of treatment were 1, 2, 5, 13, 11 and 10, respectively. In conclusion, Dai ameliorates apoptosis of cardiomyoblasts induced by ISO through Akt signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Isoflavonas/farmacologia , Mioblastos Cardíacos/efeitos dos fármacos , Fitoestrógenos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Marcação In Situ das Extremidades Cortadas , Isoproterenol , Mioblastos Cardíacos/metabolismo , Ratos
14.
Int J Mol Sci ; 17(9)2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27657062

RESUMO

Doxorubicin (Dox) is extensively used for chemotherapy in different types of cancer, but its use is limited to because of its cardiotoxicity. Our previous studies found that doxorubicin-induced insulin-like growth factor II receptor (IGF-IIR) accumulation causes cardiomyocytes apoptosis via down-regulation of HSF1 pathway. In these studies, we demonstrated a new mechanism through which anthocyanin protects cardiomyoblast cells against doxorubicin-induced injury. We found that anthocyanin decreased IGF-IIR expression via estrogen receptors and stabilized heat shock factor 1 (HSF1) to inhibit caspase 3 activation and apoptosis of cardiomyocytes. Therefore, the phytoestrogen from plants has been considered as another potential treatment for heart failure. It has been reported that the natural compound anthocyanin (ACN) has the ability to reduce the risk of cardiovascular disease (CVD). Here, we demonstrated that anthocyanin acts as a cardioprotective drug against doxorubicin-induced heart failure by attenuating cardiac apoptosis via estrogen receptors to stabilize HSF1 expression and down-regulated IGF-IIR-induced cardiomyocyte apoptosis.

15.
J Cell Biochem ; 116(6): 1113-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25536374

RESUMO

The insulin-like growth factor-II/mannose 6-phosphate receptor (IGF2R) over-expression correlates with heart disease progression. The IGF2R is not only an IGF2 clearance receptor, but it also triggers signal transduction, resulting in cardiac hypertrophy, apoptosis and fibrosis. The present study investigated the nuclear factor IL-3 (NFIL3), a transcription factor of the basic leucine zipper superfamily, and its potential pro-survival effects in cardiomyocytes. NFIL3 might play a key role in heart development and act as a survival factor in the heart, but the regulatory mechanisms are still unclear. IGF2 and IGF2R protein expression were highly increased in rat hearts subjected to hemorrhagic shock. IGF2R protein expression was also up-regulated in H9c2 cells exposed to hypoxia. Over-expression of NFIL3 in H9c2 cardiomyoblast cells inhibited the induction of hypoxia-induced apoptosis and down-regulated IGF2R expression levels. Gel shift assay, double-stranded DNA pull-down assay and chromatin immune-precipitation analyses indicated that NFIL3 binds directly to the IGF2R promoter region. Using a luciferase assay, we further observed NFIL3 repress IGF2R gene promoter activity. Our results demonstrate that NFIL3 is an important negative transcription factor, which through binding to the promoter of IGF2R, suppresses the apoptosis induced by IGF2R signaling in H9c2 cardiomyoblast cells under hypoxic conditions.


Assuntos
Hipóxia/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Receptor IGF Tipo 2/metabolismo , Proteínas Repressoras/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular , Fator de Crescimento Insulin-Like II/metabolismo , Ligação Proteica , Ratos , Receptor IGF Tipo 2/genética , Proteínas Repressoras/genética , Choque Hemorrágico/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
16.
Cell Physiol Biochem ; 36(1): 334-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25967972

RESUMO

BACKGROUND: Hemorrhagic shock (HS) is the major cause of death from trauma. Hemorrhagic shock may lead to cellular hypoxia and organ damage. Our previous findings showed that HS induced a cardiac apoptosis pathway and synergistically caused myocardial cell damage in diabetic rats under trauma-induced HS. Tetramethylpyrazine (TMP) is a major biologically active ingredient purified from the rhizome of Ligusticum wallichii (called Chuang Xiong in Chinese). Chuan Xiong rescued cells from synergistic cardiomyoblast cell injury under high-glucose (HG) conditions plus hypoxia. TMP is one of the most important active ingredients that elevated the survival rate in ischemic brain injury and prevented inducible NO synthase expression to have anti-inflammatory effects against cell damage in different cell types. METHOD: Here, we further investigate whether TMP can protect against hypoxic (<1% oxygen) conditions in H9c2 cardiomyoblast cells for 24 hrs. RESULTS: Our results showed that hypoxia mediated through HIF-1α/JNK/p38 activation significantly elevated the levels of the hypoxia-related proteins HIF-1α, BNIP3 and IGFBP3, further enhanced the pro-apoptotic protein Bak and upregulated downstream Caspase 9 and 3, resulting in cell death. All of these phenomena were fully recovered under TMP treatment. We observed that TMP exerted this effect by activating the IGF1 receptor survival pathway, dependent primarily on PI3K/Akt. When PI3K (class I) was blocked by specific siRNA, the hypoxia-induced activated caspase 3 and cell apoptosis could not be reversed by TMP treatment. CONCLUSION: Our results strongly suggest that TMP could be used to restore hypoxia-induced myocardial cell apoptosis and cardiac hypoxic damage.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Mioblastos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Mioblastos Cardíacos/metabolismo , Miócitos Cardíacos/metabolismo , Ratos
17.
Int J Med Sci ; 12(9): 708-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26392808

RESUMO

BACKGROUND: Secondhand smoke (SHS) exposure is associated with increased risk of cardiovascular disease. Aging is a physiological process that involves progressive impairment of normal heart functions due to increased vulnerability to damage. This study examines secondhand smoke exposure in aging rats to determine the age-related death-survival balance. METHODS: Rats were placed into a SHS exposure chamber and exposed to smog. Old age male Sprague-Dawley rats were exposed to 10 cigarettes for 30 min, day and night, continuing for one week. After 4 weeks the rats underwent morphological and functional studies. Left ventricular sections were stained with hematoxylin-eosin for histopathological examination. TUNEL detected apoptosis cells and protein expression related death and survival pathway were analyzed using western blot. RESULTS: Death receptor-dependent apoptosis upregulation pathways and the mitochondria apoptosis proteins were apparent in young SHS exposure and old age rats. These biological markers were enhanced in aging SHS-exposed rats. The survival pathway was found to exhibit compensation only in young SHS-exposed rats, but not in the aging rats. Further decrease in the activity of this pathway was observed in aging SHS-exposed rats. TUNEL apoptotic positive cells were increased in young SHS-exposed rats, and in aging rats with or without SHS-exposure. CONCLUSIONS: Aging reduces IGF-I compensated signaling with accelerated cardiac apoptotic effects from second-hand smoke.


Assuntos
Envelhecimento/efeitos dos fármacos , Coração/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Miocárdio/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Envelhecimento/fisiologia , Animais , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Proteína Ligante Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Inflamação/metabolismo , Masculino , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Receptor fas/metabolismo
18.
Luminescence ; 30(7): 947-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25693839

RESUMO

Topical hydroquinone serves as a skin whitener and is usually available in cosmetics or on prescription based on the hydroquinone concentration. Quantification of hydroquinone content therefore becomes an important issue in topical agents. High-performance liquid chromatography (HPLC) is the commonest method for determining hydroquinone content in topical agents, but this method is time-consuming and uses many solvents that can become an environmental issue. We report a rapid method for quantifying hydroquinone content by chemiluminescent analysis. Hydroquinone induces the production of hydrogen peroxide in the presence of basic compounds. Hydrogen peroxide induced by hydroquinone oxidized light-emitting materials such as lucigenin, resulted in the production of ultra-weak chemiluminescence that was detected by a chemiluminescence analyzer. The intensity of the chemiluminescence was found to be proportional to the hydroquinone concentration. We suggest that the rapid (measurement time, 60 s) and virtually solvent-free (solvent volume, <2 mL) chemiluminescent method described here for quantifying hydroquinone content may be an alternative to HPLC analysis.


Assuntos
Hidroquinonas/análise , Medições Luminescentes , Cromatografia Líquida de Alta Pressão , Peróxido de Hidrogênio/química , Estrutura Molecular , Oxirredução
19.
Chin J Physiol ; 58(2): 134-40, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25858474

RESUMO

Epidemiological studies and experimental data have shown that the incidences of hepatocellular carcinoma in men are more frequent than in women. Evidence suggests that imbalance of hormones, including estrogen, androgen, prolactin, and growth hormone, modifies liver tumorigenesis. In this present study, we investigated how estrogen and estrogen receptor 2 (ESR2), regulates the cell cycle mechanism in Hep3B hepatocellular carcinoma cell line. Our results showed that ESR2 overexpression in the presence of 10⁻8 M 17-ß-estradiol downregulated c-myc and cyclin D1 expression and simultaneously upregulated p27 expression. However, flow cytometry and MTT assays showed only minor G1 phase arrest without affecting cell viability. Taken together, these observations indicate that ESR2 is required to lower tumorigenesis in males by altering cell cycle proteins in a ligand-dependent manner.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Receptor beta de Estrogênio/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Regulação para Cima
20.
Artigo em Inglês | MEDLINE | ID: mdl-38310451

RESUMO

Esophageal cancer is a complex disease influenced by genetic and environmental factors. Single nucleotide polymorphisms [SNPs] in non-coding regions of the genome have emerged as crucial contributors to esophageal cancer susceptibility. This review provides a comprehensive overview of the role of SNPs in non-coding regions and their association with esophageal cancer. The accumulation of SNPs in the genome has been implicated in esophageal cancer risk. Various studies have identified specific locations in the genome where SNPs are more likely to occur, suggesting a location-specific response. Chromatin conformational studies have shed light on the localization of SNPs and their impact on gene transcription, posttranscriptional modifications, gene expression regulation, and histone modification. Furthermore, miRNA-related SNPs have been found to play a significant role in esophageal squamous cell carcinoma [ESCC]. These SNPs can affect miRNA binding sites, thereby altering target gene regulation and contributing to ESCC development. Additionally, the risk of ESCC has been linked to base excision repair, suggesting that SNPs in this pathway may influence disease susceptibility. Somatic DNA segment alterations and modified expression quantitative trait loci [eQTL] have also been associated with ESCC. These alterations can lead to disrupted gene expression and cellular processes, ultimately contributing to cancer development and progression. Moreover, SNPs have been found to be associated with the long non-coding RNA HOTAIR, which plays a crucial role in ESCC pathogenesis. This review concludes with a discussion of the current and future perspectives in the field of SNPs in non-coding regions and their relevance to esophageal cancer. Understanding the functional implications of these SNPs may lead to the identification of novel therapeutic targets and the development of personalized approaches for esophageal cancer prevention and treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa