Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 136(7): 2767-74, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24479369

RESUMO

Herein, we report a simple fabrication of hybrid nanowires (NWs) composed of a p-type conjugated polymer (CP) and n-type inorganic quantum dots (QDs) by exploiting the crystallization-driven solution assembly of poly(3-hexylthiophene)-b-poly(2-vinylpyridine) (P3HT-b-P2VP) rod-coil amphiphiles. The visualization of the crystallization-driven growth evolution of hybrid NWs through systematic transmission electron microscopy experiments showed that discrete dimeric CdSe QDs bridged by P3HT-b-P2VP polymers were generated during the initial state of crystallization. These, in turn, assemble into elongated fibrils, forming the coaxial P3HT-b-P2VP/QDs hybrid NWs. In particular, the location of the QD arrays within the single strand of P3HT-b-P2VP can be controlled precisely by manipulating the regioregularity (RR) values of P3HT block and the relative lengths of P2VP block. The degree of coaxiality of the QD arrays was shown to depend on the coplanarity of the thiophene rings of P3HT block, which can be controlled by the RR value of P3HT block. In addition, the location of QDs could be regulated at the specific-local site of P3HT-b-P2VP NW according to the surface characteristics of QDs. As an example, the comparison of two different QDs coated with hydrophobic alkyl-terminated and hydroxyl-terminated molecules, respectively, is used to elucidate the effect of the surface properties of QDs on their nanolocation in the NW.

3.
ACS Nano ; 8(3): 2848-56, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24548181

RESUMO

In this paper, we report the development of a versatile platform for a highly efficient and stable graphene oxide (GO)-based optical sensor that exhibits distinctive ratiometric color responses. To demonstrate the applicability of the platform, we fabricated a colorimetric, GO-based pH sensor that responds to a wide range of pH changes. Our sensing system is based on responsive polymer and quantum dot (QD) hybrids integrated on a single GO sheet (MQD-GO), with the GO providing an excellent signal-to-noise ratio and high dispersion stability in water. The photoluminescence emissions of the blue and orange color-emitting QDs (BQDs and OQDs) in MQD-GO can be controlled independently by different pH-responsive linkers of poly(acrylic acid) (PAA) (pKa=4.5) and poly(2-vinylpyridine) (P2VP) (pKa=3.0) that can tune the efficiencies of Förster resonance energy transfer from the BQDs to the GO and from the OQDs to the GO, respectively. As a result, the color of MQD-GO changes from orange to near-white to blue over a wide range of pH values. The detailed mechanism of the pH-dependent response of the MQD-GO sensor was elucidated by measurements of time-resolved fluorescence and dynamic light scattering. Furthermore, the MQD-GO sensor showed excellent reversibility and high dispersion stability in pure water, indicating that our system is an ideal platform for biological and environmental applications. Our colorimetric GO-based optical sensor can be expanded easily to various other multifunctional, GO-based sensors by using alternate stimuli-responsive polymers.

4.
Nanoscale ; 5(13): 5720-4, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23712656

RESUMO

Efficient temperature-sensing platform was demonstrated using temperature-responsive, fluorescent P7AC-b-PNIPAM-b-PSN3 block copolymer-anchored graphene oxide sheets (FGO). FGO exhibited extraordinary stability in water and showed fast optical on-off switching behavior in response to temperature change.

5.
Chem Commun (Camb) ; 47(37): 10272-4, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21858291

RESUMO

A color distinctive, ratiometric pH sensor was demonstrated using pH responsive and fluorescent (PyMMP-b-P2VP) diblock copolymer coated CdSe/ZnS QDs. Due to the change in the P2VP conformations in response to pH change, the color of QDs in solution changes distinctly from blue to red.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa