Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 80(4): 875-83, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21418208

RESUMO

1. Elucidation of the mechanism determining the spatial scale of patch selection by herbivores has been complicated by the way in which resource availability at a specific scale is measured and by vigilance behaviour of the herbivores themselves. To reduce these complications, we studied patch selection by an animal with negligible predation risk, the African elephant. 2. We introduce the concept of nutrient load as the product of patch size, number of patches and local patch nutrient concentration. Nutrient load provides a novel spatially explicit expression of the total available nutrients a herbivore can select from. 3. We hypothesized that elephant would select nutrient-rich patches, based on the nutrient load per 2500 m(2) down to the individual plant scale, and that this selection will depend on the nitrogen and phosphorous contents of plants. 4. We predicted that elephant would cause more adverse impact to trees of lower value to them in order to reach plant parts with higher nutrient concentrations such as bark and root. However, elephant should maintain nutrient-rich trees by inducing coppicing of trees through re-utilization of leaves. 5. Elephant patch selection was measured in a homogenous tree species stand by manipulating the spatial distribution of soil nutrients in a large field experiment using NPK fertilizer. 6. Elephant were able to select nutrient-rich patches and utilized Colophospermum mopane trees inside these patches more than outside, at scales ranging from 2500 down to 100 m(2) . 7. Although both nitrogen and phosphorus contents of leaves from C. mopane trees were higher in fertilized and selected patches, patch choice correlated most strongly with nitrogen content. As predicted, stripping of leaves occurred more in nutrient-rich patches, while adverse impact such as uprooting of trees occurred more in nutrient-poor areas. 8. Our results emphasize the necessity of including scale-dependent selectivity in foraging studies and how elephant foraging behaviour can be used as indicators of change in the availability of nutrients.


Assuntos
Elefantes/fisiologia , Fabaceae/metabolismo , Preferências Alimentares , Folhas de Planta/metabolismo , Solo/análise , Animais , Ecossistema , Nitrogênio/metabolismo , Fósforo/metabolismo , África do Sul , Árvores/metabolismo
2.
J Anim Ecol ; 80(1): 270-81, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21054380

RESUMO

1. Understanding and accurately predicting the spatial patterns of habitat use by organisms is important for ecological research, biodiversity conservation and ecosystem management. However, this understanding is complicated by the effects of spatial scale, because the scale of analysis affects the quantification of species-environment relationships. 2. We therefore assessed the influence of environmental context (i.e. the characteristics of the landscape surrounding a site), varied over a large range of scales (i.e. ambit radii around focal sites), on the analysis and prediction of habitat selection by African elephants in Kruger National Park, South Africa. 3. We focused on the spatial scaling of the elephants' response to their main resources, forage and water, and found that the quantification of habitat selection strongly depended on the scales at which environmental context was considered. Moreover, the inclusion of environmental context at characteristic scales (i.e. those at which habitat selectivity was maximized) increased the predictive capacity of habitat suitability models. 4. The elephants responded to their environment in a scale-dependent and perhaps hierarchical manner, with forage characteristics driving habitat selection at coarse spatial scales, and surface water at fine spatial scales. 5. Furthermore, the elephants exhibited sexual habitat segregation, mainly in relation to vegetation characteristics. Male elephants preferred areas with high tree cover and low herbaceous biomass, whereas this pattern was reversed for female elephants. 6. We show that the spatial distribution of elephants can be better understood and predicted when scale-dependent species-environment relationships are explicitly considered. This demonstrates the importance of considering the influence of spatial scale on the analysis of spatial patterning in ecological phenomena.


Assuntos
Ecossistema , Elefantes/fisiologia , Animais , Demografia , Feminino , Masculino , Modelos Biológicos , África do Sul
3.
PLoS One ; 10(6): e0128340, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26083248

RESUMO

Elephant are considered major drivers of ecosystems, but their effects within small-scale landscape features and on other herbivores still remain unclear. Elephant impact on vegetation has been widely studied in areas where elephant have been present for many years. We therefore examined the combined effect of short-term elephant presence (< 4 years) and hillslope position on tree species assemblages, resource availability, browsing intensity and soil properties. Short-term elephant presence did not affect woody species assemblages, but did affect height distribution, with greater sapling densities in elephant access areas. Overall tree and stem densities were also not affected by elephant. By contrast, slope position affected woody species assemblages, but not height distributions and densities. Variation in species assemblages was statistically best explained by levels of total cations, Zinc, sand and clay. Although elephant and mesoherbivore browsing intensities were unaffected by slope position, we found lower mesoherbivore browsing intensity on crests with high elephant browsing intensity. Thus, elephant appear to indirectly facilitate the survival of saplings, via the displacement of mesoherbivores, providing a window of opportunity for saplings to grow into taller trees. In the short-term, effects of elephant can be minor and in the opposite direction of expectation. In addition, such behavioural displacement promotes recruitment of saplings into larger height classes. The interaction between slope position and elephant effect found here is in contrast with other studies, and illustrates the importance of examining ecosystem complexity as a function of variation in species presence and topography. The absence of a direct effect of elephant on vegetation, but the presence of an effect on mesoherbivore browsing, is relevant for conservation areas especially where both herbivore groups are actively managed.


Assuntos
Elefantes/fisiologia , Animais , Ecossistema , Comportamento Alimentar/fisiologia , Solo/química , Árvores/fisiologia
4.
PLoS One ; 6(3): e17983, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21445345

RESUMO

Herbivory by megaherbivores on woody vegetation in general is well documented; however studies focusing on the individual browsing effects of both mega- and mesoherbivore species on recruitment are scarce. We determined these effects for elephant Loxodonta africana and nyala Tragelaphus angasii in the critically endangered Sand Forest, which is restricted to east southern Africa, and is conserved mainly in small reserves with high herbivore densities. Replicated experimental treatments (400 m(2)) in a single forest patch were used to exclude elephant, or both elephant and nyala. In each treatment, all woody individuals were identified to species and number of stems, diameter and height were recorded. Results of changes after two years are presented. Individual tree and stem densities had increased in absence of nyala and elephant. Seedling recruitment (based on height and diameter) was inhibited by nyala, and by elephant and nyala in combination, thereby preventing recruitment into the sapling stage. Neither nyala or elephant significantly reduced sapling densities. Excluding both elephant and nyala in combination enhanced recruitment of woody species, as seedling densities increased, indicating that forest regeneration is impacted by both mega- and mesoherbivores. The Sand Forest tree community approached an inverse J-shaped curve, with the highest abundance in the smaller size classes. However, the larger characteristic tree species in particular, such as Newtonia hildebrandtii, were missing cohorts in the middle size classes. When setting management goals to conserve habitats of key importance, conservation management plans need to consider the total herbivore assemblage present and the resulting browsing effects on vegetation. Especially in Africa, where the broadest suite of megaherbivores still persists, and which is currently dealing with the 'elephant problem', the individual effects of different herbivore species on recruitment and dynamics of forests and woodlands are important issues which need conclusive answers.


Assuntos
Comportamento Alimentar , Insetos/fisiologia , Árvores , Animais , Arábia Saudita
5.
PLoS One ; 3(12): e3979, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19092993

RESUMO

BACKGROUND: Acquiring greater understanding of the factors causing changes in vegetation structure -- particularly with the potential to cause regime shifts -- is important in adaptively managed conservation areas. Large trees (> or =5 m in height) play an important ecosystem function, and are associated with a stable ecological state in the African savanna. There is concern that large tree densities are declining in a number of protected areas, including the Kruger National Park, South Africa. In this paper the results of a field study designed to monitor change in a savanna system are presented and discussed. METHODOLOGY/PRINCIPAL FINDINGS: Developing the first phase of a monitoring protocol to measure the change in tree species composition, density and size distribution, whilst also identifying factors driving change. A central issue is the discrete spatial distribution of large trees in the landscape, making point sampling approaches relatively ineffective. Accordingly, fourteen 10 m wide transects were aligned perpendicular to large rivers (3.0-6.6 km in length) and eight transects were located at fixed-point photographic locations (1.0-1.6 km in length). Using accumulation curves, we established that the majority of tree species were sampled within 3 km. Furthermore, the key ecological drivers (e.g. fire, herbivory, drought and disease) which influence large tree use and impact were also recorded within 3 km. CONCLUSIONS/SIGNIFICANCE: The technique presented provides an effective method for monitoring changes in large tree abundance, size distribution and use by the main ecological drivers across the savanna landscape. However, the monitoring of rare tree species would require individual marking approaches due to their low densities and specific habitat requirements. Repeat sampling intervals would vary depending on the factor of concern and proposed management mitigation. Once a monitoring protocol has been identified and evaluated, the next stage is to integrate that protocol into a decision-making system, which highlights potential leading indicators of change. Frequent monitoring would be required to establish the rate and direction of change. This approach may be useful in generating monitoring protocols for other dynamic systems.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental/métodos , Árvores/química , Animais , Biodiversidade , Elefantes/fisiologia , Geografia , Densidade Demográfica , Avaliação de Programas e Projetos de Saúde , África do Sul , Árvores/fisiologia
6.
Oecologia ; 150(2): 344-54, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16927101

RESUMO

Elephants (Loxodonta africana) exhibit pronounced sexual dimorphism, and in this study we test the prediction that the differences in body size and sociality are significant enough to drive divergent foraging strategies and ultimately sexual segregation. Body size influences the foraging behaviour of herbivores through the differential scaling coefficients of metabolism and gut size, with larger bodied individuals being able to tolerate greater quantities of low-quality, fibrous vegetation, whilst having lower mass-specific energy requirements. We test two distinct theories: the scramble competition hypothesis (SCH) and the forage selection hypothesis (FSH). Comprehensive behavioural data were collected from the Pongola Game Reserve and the Phinda Private Game Reserve in South Africa over a 2.5-year period. The data were analysed using sex as the independent variable. Adult females targeted a wider range of species, adopted a more selective foraging approach and exhibited greater bite rates as predicted by the body size hypothesis and the increased demands of reproductive investment (lactation and pregnancy). Males had longer feeding bouts, displayed significantly more destructive behaviour (31% of observations, 11% for females) and ingested greater quantities of forage during each feeding bout. The independent ranging behaviour of adult males enables them to have longer foraging bouts as they experience fewer social constraints than females. The SCH was rejected as a cause of sexual segregation due to the relative abundance of low quality forage, and the fact that feeding heights were similar for both males and females. However, we conclude that the differences in the foraging strategies of the sexes are sufficient to cause spatial segregation as postulated by the FSH. Sexual dimorphism and the associated behavioural differences have important implications for the management and conservation of elephant and other dimorphic species, with the sexes effectively acting as distinct "ecological species".


Assuntos
Elefantes/fisiologia , Animais , Comportamento Alimentar/fisiologia , Feminino , Masculino , Fatores Sexuais , Árvores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa