Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967150

RESUMO

Patients with advanced skeletal metastases arising from primary cancers including breast, lung, and prostate suffer from extreme pain, bone loss, and frequent fractures. While the importance of interactions between bone and tumors is well-established, our understanding of complex cell-cell and cell-microenvironment interactions remains limited in part due to a lack of appropriate 3D bone models. To improve our understanding of the influence of bone morphometric properties on the regulation of tumor-induced bone disease (TIBD), we utilized bone-like 3D scaffolds in vitro and in vivo. Scaffolds were seeded with tumor cells, and changes in cell motility, proliferation, and gene expression were measured. Genes associated with TIBD significantly increased with increasing scaffold rigidity. Drug response differed when tumors were cultured in 3D compared to 2D. Inhibitors for Integrin ß3 and TGF-ß Receptor II significantly reduced bone-metastatic gene expression in 2D but not 3D, while treatment with the Gli antagonist GANT58 significantly reduced gene expression in both 2D and 3D. When tumor-seeded 3D scaffolds were implanted into mice, infiltration of myeloid progenitors changed in response to pore size and rigidity. This study demonstrates a versatile 3D model of bone used to study the influence of mechanical and morphometric properties of bone on TIBD.


Assuntos
Neoplasias Ósseas , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Proteínas de Neoplasias/biossíntese , Piridinas/farmacologia , Tiofenos/farmacologia , Alicerces Teciduais/química , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica
2.
J Am Chem Soc ; 136(42): 14896-902, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25254509

RESUMO

A combination of anionic and RAFT polymerization was used to synthesize an ABC triblock polymer poly[(propylenesulfide)-block-(N,N-dimethylacrylamide)-block-(N-isopropylacrylamide)] (PPS-b-PDMA-b-PNIPAAM) that forms physically cross-linked hydrogels when transitioned from ambient to physiologic temperature and that incorporates mechanisms for reactive oxygen species (ROS) triggered degradation and drug release. At ambient temperature (25 °C), PPS-b-PDMA-b-PNIPAAM assembled into 66 ± 32 nm micelles comprising a hydrophobic PPS core and PNIPAAM on the outer corona. Upon heating to physiologic temperature (37 °C), which exceeds the lower critical solution temperature (LCST) of PNIPAAM, micelle solutions (at ≥2.5 wt %) sharply transitioned into stable, hydrated gels. Temperature-dependent rheology indicated that the equilibrium storage moduli (G') of hydrogels at 2.5, 5.0, and 7.5 wt % were 20, 380, and 850 Pa, respectively. The PPS-b-PDMA-b-PNIPAAM micelles were preloaded with the model drug Nile red, and the resulting hydrogels demonstrated ROS-dependent drug release. Likewise, exposure to the peroxynitrite generator SIN-1 degraded the mechanical properties of the hydrogels. The hydrogels were cytocompatible in vitro and were demonstrated to have utility for cell encapsulation and delivery. These hydrogels also possessed inherent cell-protective properties and reduced ROS-mediated cellular death in vitro. Subcutaneously injected PPS-b-PDMA-b-PNIPAAM polymer solutions formed stable hydrogels that sustained local release of the model drug Nile red for 14 days in vivo. These collective data demonstrate the potential use of PPS-b-PDMA-b-PNIPAAM as an injectable, cyto-protective hydrogel that overcomes conventional PNIPAAM hydrogel limitations such as syneresis, lack of degradability, and lack of inherent drug loading and environmentally responsive release mechanisms.


Assuntos
Materiais Biocompatíveis/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Hidrogéis/química , Polímeros/química , Espécies Reativas de Oxigênio/metabolismo , Temperatura , Acrilamidas/química , Resinas Acrílicas/química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacologia , Hidrogéis/síntese química , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Camundongos , Micelas , Modelos Moleculares , Conformação Molecular , Células NIH 3T3 , Oxazinas/química , Reologia , Sulfetos/química
3.
Biomaterials ; 64: 33-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26115412

RESUMO

Cancer patients frequently develop skeletal metastases that significantly impact quality of life. Since bone metastases remain incurable, a clearer understanding of molecular mechanisms regulating skeletal metastases is required to develop new therapeutics that block establishment of tumors in bone. While many studies have suggested that the microenvironment contributes to bone metastases, the factors mediating tumors to progress from a quiescent to a bone-destructive state remain unclear. In this study, we hypothesized that the "soil" of the bone microenvironment, specifically the rigid mineralized extracellular matrix, stimulates the transition of the tumor cells to a bone-destructive phenotype. To test this hypothesis, we synthesized 2D polyurethane (PUR) films with elastic moduli ranging from the basement membrane (70 MPa) to cortical bone (3800 MPa) and measured expression of genes associated with mechanotransduction and bone metastases. We found that expression of Integrin ß3 (Iß3), as well as tumor-produced factors associated with bone destruction (Gli2 and parathyroid hormone related protein (PTHrP)), significantly increased with matrix rigidity, and that blocking Iß3 reduced Gli2 and PTHrP expression. To identify the mechanism by which Iß3 regulates Gli2 and PTHrP (both are also known to be regulated by TGF-ß), we performed Förster resonance energy transfer (FRET) and immunoprecipitation, which indicated that Iß3 co-localized with TGF-ß Receptor Type II (TGF-ß RII) on rigid but not compliant films. Finally, transplantation of tumor cells expressing Iß3 shRNA into the tibiae of athymic nude mice significantly reduced PTHrP and Gli2 expression, as well as bone destruction, suggesting a crucial role for tumor-produced Iß3 in disease progression. This study demonstrates that the rigid mineralized bone matrix can alter gene expression and bone destruction in an Iß3/TGF-ß-dependent manner, and suggests that Iß3 inhibitors are a potential therapeutic approach for blocking tumor transition to a bone destructive phenotype.


Assuntos
Integrina beta3/fisiologia , Proteínas de Neoplasias/fisiologia , Osteólise/etiologia , Maleabilidade , Proteínas Serina-Treonina Quinases/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Microambiente Tumoral/fisiologia , Adenocarcinoma/patologia , Adenocarcinoma/secundário , Animais , Neoplasias Ósseas/complicações , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/secundário , Linhagem Celular Tumoral , Módulo de Elasticidade , Matriz Extracelular/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina beta3/efeitos dos fármacos , Integrina beta3/genética , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Gli2 com Dedos de Zinco
4.
Data Brief ; 4: 440-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26306316

RESUMO

The contents of this data in brief are related to the article titled "Matrix Rigidity Regulates the Transition of Tumor Cells to a Bone-Destructive Phenotype through Integrin ß3 and TGF-ß Receptor Type II". In this DIB we will present our supplemental data investigating Integrin expression, attachment of cells to various adhesion molecules, and changes in gene expression in multiple cancer cell lines. Since the interactions of Integrins with adsorbed matrix proteins are thought to affect the ability of cancer cells to interact with their underlying substrates, we examined the expression of Integrin ß1, ß3, and ß5 in response to matrix rigidity. We found that only Iß3 increased with increasing substrate modulus. While it was shown that fibronectin greatly affects the expression of tumor-produced factors associated with bone destruction (parathyroid hormone-related protein, PTHrP, and Gli2), poly-l-lysine, vitronectin and type I collagen were also analyzed as potential matrix proteins. Each of the proteins was independently adsorbed on both rigid and compliant polyurethane films which were subsequently used to culture cancer cells. Poly-l-lysine, vitronectin and type I collagen all had negligible effects on PTHrP or Gli2 expression, but fibronectin was shown to have a dose dependent effect. Finally, altering the expression of Iß3 demonstrated that it is required for tumor cells to respond to the rigidity of the matrix, but does not affect other cell growth or viability. Together these data support the data presented in our manuscript to show that the rigidity of bone drives Integrinß3/TGF-ß crosstalk, leading to increased expression of Gli2 and PTHrP.

5.
Adv Healthc Mater ; 4(12): 1826-32, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26121662

RESUMO

Scaffolds with tunable mechanical and topological properties fabricated by templated-fused deposition modeling promote increased osteogenic differentiation of bone marrow stem cells with increasing substrate modulus and decreasing pore size. These findings guide the rational design of cell-responsive scaffolds that recapitulate the bone microenvironment for repair of bone damaged by trauma or disease.


Assuntos
Diferenciação Celular , Osteogênese , Alicerces Teciduais/química , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Células-Tronco Mesenquimais , Ratos , Ratos Sprague-Dawley
6.
Artigo em Inglês | MEDLINE | ID: mdl-24127230

RESUMO

The design of injectable biomaterials has attracted considerable attention in recent years. Many injectable biomaterials, such as hydrogels and calcium phosphate cements (CPCs), have nanoscale pores that limit the rate of cellular migration and proliferation. While introduction of macroporosity has been suggested to increase cellular infiltration and tissue healing, many conventional methods for generating macropores often require harsh processing conditions that preclude their use in injectable foams. In recent years, processes such as porogen leaching, gas foaming, and emulsion-templating have been adapted to generate macroporosity in injectable CPCs, hydrogels, and hydrophobic polymers. While some of the more mature injectable foam technologies have been evaluated in clinical trials, there are challenges remaining to be addressed, such as the biocompatibility and ultimate fate of the sacrificial phase used to generate pores within the foam after it sets in situ. Furthermore, while implantable scaffolds can be washed extensively to remove undesirable impurities, all of the components required to synthesize injectable foams must be injected into the defect. Thus, every compound in the foam must be biocompatible and noncytotoxic at the concentrations utilized. As future research addresses these critical challenges, injectable macroporous foams are anticipated to have an increasingly significant impact on improving patient outcomes for a number of clinical procedures.


Assuntos
Materiais Biocompatíveis , Formas de Dosagem , Hidrogéis , Injeções , Nanoestruturas , Medicina Regenerativa/métodos , Humanos
7.
Clin Exp Metastasis ; 31(8): 945-59, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25359619

RESUMO

Parathyroid hormone-related protein (PTHrP) is an important regulator of bone destruction in bone metastatic tumors. Transforming growth factor-beta (TGF-ß) stimulates PTHrP production in part through the transcription factor Gli2, which is regulated independent of the Hedgehog signaling pathway in osteolytic cancer cells. However, inhibition of TGF-ß in vivo does not fully inhibit tumor growth in bone or tumor-induced bone destruction, suggesting other pathways are involved. While Wnt signaling regulates Gli2 in development, the role of Wnt signaling in bone metastasis is unknown. Therefore, we investigated whether Wnt signaling regulates Gli2 expression in tumor cells that induce bone destruction. We report here that Wnt activation by ß-catenin/T cell factor 4 (TCF4) over-expression or lithium chloride (LiCl) treatment increased Gli2 and PTHrP expression in osteolytic cancer cells. This was mediated through the TCF and Smad binding sites within the Gli2 promoter as determined by promoter mutation studies, suggesting cross-talk between TGF-ß and Wnt signaling. Culture of tumor cells on substrates with bone-like rigidity increased Gli2 and PTHrP production, enhanced autocrine Wnt activity and led to an increase in the TCF/Wnt signaling reporter (TOPFlash), enriched ß-catenin nuclear accumulation, and elevated Wnt-related genes by PCR-array. Stromal cells serve as an additional paracrine source of Wnt ligands and enhanced Gli2 and PTHrP mRNA levels in MDA-MB-231 and RWGT2 cells in vitro and promoted tumor-induced bone destruction in vivo in a ß-catenin/Wnt3a-dependent mechanism. These data indicate that a combination of matrix rigidity and stromal-secreted factors stimulate Gli2 and PTHrP through Wnt signaling in osteolytic breast cancer cells, and there is significant cross-talk between the Wnt and TGF-ß signaling pathways. This suggests that the Wnt signaling pathway may be a potential therapeutic target for inhibiting tumor cell response to the bone microenvironment and at the very least should be considered in clinical regimens targeting TGF-ß signaling.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias da Mama/patologia , Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Pulmonares/patologia , Proteínas Nucleares/genética , Transdução de Sinais/fisiologia , Proteína Wnt3A/fisiologia , Animais , Western Blotting , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Proteínas Nucleares/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo , Células Estromais/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Gli2 com Dedos de Zinco , beta Catenina/antagonistas & inibidores , beta Catenina/genética , beta Catenina/metabolismo
8.
Biomaterials ; 35(12): 3766-76, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24491510

RESUMO

Biodegradable tissue engineering scaffolds are commonly fabricated from poly(lactide-co-glycolide) (PLGA) or similar polyesters that degrade by hydrolysis. PLGA hydrolysis generates acidic breakdown products that trigger an accelerated, autocatalytic degradation mechanism that can create mismatched rates of biomaterial breakdown and tissue formation. Reactive oxygen species (ROS) are key mediators of cell function in both health and disease, especially at sites of inflammation and tissue healing, and induction of inflammation and ROS are natural components of the in vivo response to biomaterial implantation. Thus, polymeric biomaterials that are selectively degraded by cell-generated ROS may have potential for creating tissue engineering scaffolds with better matched rates of tissue in-growth and cell-mediated scaffold biodegradation. To explore this approach, a series of poly(thioketal) (PTK) urethane (PTK-UR) biomaterial scaffolds were synthesized that degrade specifically by an ROS-dependent mechanism. PTK-UR scaffolds had significantly higher compressive moduli than analogous poly(ester urethane) (PEUR) scaffolds formed from hydrolytically-degradable ester-based diols (p < 0.05). Unlike PEUR scaffolds, the PTK-UR scaffolds were stable under aqueous conditions out to 25 weeks but were selectively degraded by ROS, indicating that their biodegradation would be exclusively cell-mediated. The in vitro oxidative degradation rates of the PTK-URs followed first-order degradation kinetics, were significantly dependent on PTK composition (p < 0.05), and correlated to ROS concentration. In subcutaneous rat wounds, PTK-UR scaffolds supported cellular infiltration and granulation tissue formation, followed first-order degradation kinetics over 7 weeks, and produced significantly greater stenting of subcutaneous wounds compared to PEUR scaffolds. These combined results indicate that ROS-degradable PTK-UR tissue engineering scaffolds have significant advantages over analogous polyester-based biomaterials and provide a robust, cell-degradable substrate for guiding new tissue formation.


Assuntos
Espécies Reativas de Oxigênio/metabolismo , Engenharia Tecidual , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Catálise , Ácido Láctico/química , Microscopia Eletrônica de Varredura , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Ratos , Ferimentos e Lesões/terapia
9.
J Biomed Mater Res A ; 101(12): 3630-45, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23661623

RESUMO

Injectable and settable biomaterials are a growing class of therapeutic technologies within the field of regenerative medicine. These materials offer advantages compared to prefabricated implants because of their ability to be utilized as part of noninvasive surgical procedures, fill complex defect shapes, cure in situ, and incorporate cells and other active biologics. However, there are significant technical barriers to clinical translation of injectable and settable biomaterials, such as achieving clinically relevant handling properties and benign reaction conditions. This review focuses on the engineering challenges associated with the design and development of injectable and chemically settable polymeric biomaterials. Additionally, specific examples of the diverse chemistries utilized to overcome these challenges are covered. The future translation of injectable and settable biomaterials is anticipated to improve patient outcomes for a number of clinical conditions.


Assuntos
Materiais Biocompatíveis/síntese química , Teste de Materiais , Polímeros/síntese química , Materiais Biocompatíveis/classificação , Injeções
10.
Acta Biomater ; 9(2): 4964-75, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23128157

RESUMO

Circulating monocytes undergo spontaneous apoptosis when there is no activation stimulus, which is critical to population control for proper host response to implants. As activation and apoptosis of monocytes/macrophages are regulated by cell-cell and cell-matrix interactions, their regulatory mechanism was investigated in this study using polyethylene glycol (PEG)-containing polyurethane films in which PEG-rich and polyester-rich domains were phase separated. Human blood monocyte-derived macrophages (HBMs) preferentially adhered to PEG domains (cell-matrix interaction) due to the low molecular weight (600 g mol⁻¹), resulting in increased HBM density (cell-cell interaction). As both cell-cell and cell-matrix interactions were promoted, HBM apoptosis increased, while their activation as measured by phagocytosis, intracellular reactive oxygen species (ROS) level and matrix metalloproteinase-9 production decreased compared to PEG-free films. When cell seeding density and cell-adhesive gelatin coating on silicone films were controlled, a cooperative role of cell-matrix (adhesion) and cell-cell (density) interactions in inducing HBM apoptosis was observed. Expression of the macrophage adhesion molecule CD11b caused apoptosis in this context, which was mediated by tissue necrosis factor-α signaling but down-regulated by the ROS inhibitor diphenylene iodonium and the anti-inflammatory peptide Ac-SDKP, suggesting a new concept for the design of biomaterials that allows for cell adhesion without excessive inflammatory activation.


Assuntos
Apoptose/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Poliuretanos/farmacologia , Adsorção/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Inflamação/patologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Macrófagos/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Polietilenoglicóis/química , Poliuretanos/química , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Methods Mol Biol ; 1046: 171-89, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23868588

RESUMO

Invasion by cancer cells through the extracellular matrix (ECM) of tissues is a critical step in cancer progression and metastasis. Actin-rich subcellular protrusions known as invadopodia are thought to facilitate this process by localizing proteinases which degrade the ECM and allow for cancer cell penetration. We have shown in vitro that invadopodia activity is regulated by the rigidity of the ECM, which suggests that matrix remodeling in vivo may also be regulated by the mechanical properties of tissues. In order to study rigidity effects on invadopodia activity in a controlled manner, we have developed assays in which we have conjugated degradable fluorescent matrix molecules to tunable synthetic substrates. In addition, we have also utilized ex vivo tissue-derived substrates to corroborate our findings. In this chapter, we present detailed protocols describing the synthesis and preparation of our synthetic substrates, polyacrylamide gels and polyurethane elastomers, for use in these matrix degradation assays as well as the steps required to utilize our tissue-derived substrates.


Assuntos
Actinas , Matriz Extracelular/química , Biologia Molecular/métodos , Neoplasias/patologia , Actinas/química , Actinas/metabolismo , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Humanos , Metástase Neoplásica , Neoplasias/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Especificidade por Substrato
12.
Acta Biomater ; 8(12): 4405-16, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22871639

RESUMO

Injectable and settable bone grafts offer significant advantages over pre-formed implants due to their ability to be administered using minimally invasive techniques and to conform to the shape of the defect. However, injectable biomaterials present biocompatibility challenges due to the potential toxicity and ultimate fate of reactive components that are not incorporated in the final cured product. In this study the effects of stoichiometry and triethylenediamine (TEDA) catalyst concentration on the reactivity, injectability, and biocompatibility of two component lysine-derived polyurethane (PUR) biocomposites were investigated. Rate constants were measured for the reactions of water (a blowing agent resulting in the generation of pores), polyester triol, dipropylene glycol (DPG), and allograft bone particles with the isocyanate-terminated prepolymer using an in situ attenuated total reflection Fourier transform infrared spectroscopy technique. Based on the measured rate constants, a kinetic model predicting the conversion of each component with time was developed. Despite the fact that TEDA is a well-known urethane gelling catalyst, it was found to preferentially catalyze the blowing reaction with water relative to the gelling reactions by a ratio >17:1. Thus the kinetic model predicted that the prepolymer and water proceeded to full conversion, while the conversions of polyester triol and DPG were <70% after 24h, which was consistent with leaching experiments showing that only non-cytotoxic polyester triol and DPG were released from the reactive PUR at early time points. The PUR biocomposite supported cellular infiltration and remodeling in femoral condyle defects in rabbits at 8weeks, and there was no evidence of an adverse inflammatory response induced by unreacted components from the biocomposite or degradation products from the cured polymer. Taken together, these data underscore the utility of the kinetic model in predicting the biocompatibility of reactive biomaterials.


Assuntos
Substitutos Ósseos/farmacologia , Fêmur/lesões , Teste de Materiais , Modelos Biológicos , Poliuretanos/farmacologia , Animais , Substitutos Ósseos/química , Fêmur/patologia , Cinética , Poliuretanos/química , Porosidade , Coelhos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa