Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 214(Pt 4): 114113, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36030914

RESUMO

Various articles have been written about MOFs, which are organic-inorganic polymer structures that are unique in three-dimensional porosity, crystalline structure, and their ability to adsorb cadmium ion pollutants from aqueous solutions. These materials possess active metal sites, highly porous structures, high specific surfaces, high chemical functionality, and porous topologies. It is necessary to study adsorption kinetics, isotherms, and mechanisms in order to better understand the adsorption process. Adsorption kinetics can provide information about the adsorption rate and reaction pathway of adsorbents. Adsorption isotherms analyze the possibility of absorbances based on the Gibbs equation and thermodynamic theories. Moreover, in practical applications, knowledge of the adsorption mechanism is essential for predicting adsorption reactions and designing MOFs structures. In this review, the latest suggested adsorption mechanisms, kinetics, and isotherms of MOFs-based materials for removing cadmium ions are presented. A comparison is then conducted between different MOFs and the mechanisms of cadmium ion removal. We also discuss the future role of MOFs in removing environmental contaminants. Lastly, we discuss the gap in research and limitations of MOFs as adsorbents in actual applications, and probable technology development for the development of cost-efficient and sustainable MOFs for metal ion removal.


Assuntos
Estruturas Metalorgânicas , Adsorção , Cádmio , Íons , Metais , Porosidade , Água
2.
J Environ Manage ; 199: 7-12, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28521210

RESUMO

This study investigates, verifies and determines the optimal parameters for the selective thermal transformation of problematic electronic waste (e-waste) to produce value-added copper-tin (Cu-Sn) based alloys; thereby demonstrating a novel new pathway for the cost-effective recovery of resources from one of the world's fastest growing and most challenging waste streams. Using outdated computer printed circuit boards (PCBs), a ubiquitous component of e-waste, we investigated transformations across a range of temperatures and time frames. Results indicate a two-step heat treatment process, using a low temperature step followed by a high temperature step, can be used to produce and separate off, first, a lead (Pb) based alloy and, subsequently, a Cu-Sn based alloy. We also found a single-step heat treatment process at a moderate temperature of 900 °C can be used to directly transform old PCBs to produce a Cu-Sn based alloy, while capturing the Pb and antimony (Sb) as alloying elements to prevent the emission of these low melting point elements. These results demonstrate old computer PCBs, large volumes of which are already within global waste stockpiles, can be considered a potential source of value-added metal alloys, opening up a new opportunity for utilizing e-waste to produce metal alloys in local micro-factories.


Assuntos
Cobre , Resíduo Eletrônico , Reciclagem , Estanho , Ligas , Computadores , Temperatura
3.
J Environ Manage ; 188: 32-42, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27923163

RESUMO

Environmental concern about automotive shredder residue (ASR) has increased in recent years due to its harmful content of heavy metals. Although several approaches of ASR management have been suggested, these approaches remain commercially unproven. This study presents an alternative approach for ASR management where advanced materials can be generated as a by-product. In this approach, titanium nitride (TiN) has been thermally synthesized by nitriding pressed mixture of automotive shredder residue (ASR) and titanium oxide (TiO2). Interactions between TiO2 and ASR at non-isothermal conditions were primarily investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry. Results indicated that TiO2 influences and catalyses degradation reactions of ASR, and the temperature, at which reduction starts, was determined around 980 °C. The interaction between TiO2 and ASR at isothermal conditions in the temperature range between 1200 and 1550 °C was also studied. The pressed mixture of both materials resulted in titanium nitride (TiN) ceramic at all given temperatures. Formation kinetics were extracted using several models for product layer diffusion-controlled solid-solid and solid-fluid reactions. The effect of reactants ratio and temperature on the degree of conversion and morphology was investigated. The effect of reactants ratio was found to have considerable effect on the morphology of the resulting material, while temperature had a lesser impact. Several unique structures of TiN (porous nanostructured, polycrystalline, micro-spherical and nano-sized structures) were obtained by simply tuning the ratio of TiO2 to ASR, and a product with appreciable TiN content of around 85% was achieved after only one hour nitridation at 1550 °C.


Assuntos
Cerâmica/química , Nanopartículas Metálicas/química , Titânio/química , Gerenciamento de Resíduos/métodos , Automóveis , Varredura Diferencial de Calorimetria , Nanoestruturas , Temperatura , Termogravimetria , Resíduos
4.
Sci Rep ; 10(1): 181, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932613

RESUMO

There is a continuous quest for discovery of a steel grade which has better properties and lower production cost. To design steel with superior properties for industrial application, it is essential to understand the effect of microstructure and engineer it to fit the purpose. In this study, a counter intuitive strategy has used to reveal the mechanism of high carbon steel with ultrahard structure. High compact force has been used to produce a structure which has ceramic-like hardness without compensating the toughness significantly. The behaviour of high carbon low-alloy steel as the starting material under different stages of deformation has been studied to differentiate various deformation paths and microstructural transformation processes. Microscopy investigation by secondary electron microscopy, high-resolution electron backscattered diffraction (HR-EBSD) analysis and Transmission electron microscopy (TEM) showed that the key point to achieve ~75% increased hardness in this steel is through generation of nano-structured martensite of less than 50 nm grains size which can be formed due to high impact force. In this paper, we reveal a nano grained steel structure with excellent mechanical properties resulting from phase transformation, uniform dislocation distribution, grain refinement and recrystallization.

5.
Sci Rep ; 9(1): 15631, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666675

RESUMO

It is commonly known that precipitation of secondary phase in non-ferrous alloys will affect the mechanical properties of them. But due to the nature of dual-phase low-alloy high-carbon steel and its high potential of precipitation of cementite, there is limited study on tailoring the mechanical and corrosion properties of this grade of steel by controlling the precipitation of different phases. Predicting and controlling precipitation behaviour on this grade of steel is of great importance towards producing more advanced applications using this low-cost alloy. In this study the new concept of selective-precipitation process for controlling the mechanical and corrosion behaviour of dual-phase low-alloy high-carbon steel has been introduced. We have investigated the precipitation of different phases using in-situ observation ultra-high temperature confocal scanning laser microscopy, image analyser - ImageJ, scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and electron probe microanalysis (EPMA). Volume fraction of each phase including retained austenite, martensite and precipitated phases was determined by X-ray diffraction (XRD), electrochemical corrosion test by Tafel extrapolation method and hardness performance by nanoindentation hardness measurement. The experimental results demonstrated that, by controlling the precipitations inside the matrix and at grain boundaries through heat treatment, we can increase the hardness of steel from 7.81 GPa to 11.4 GPa. Also, corrosion resistance of steel at different condition has been investigated. This new approach will open new possibility of using this low-cost steel for high performance applications.

6.
J Hazard Mater ; 371: 389-396, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30870643

RESUMO

Electronic waste (e-waste) has become an urgent issue in digitally dependent world, owing to the unprecedented use of electronic devices and this has compelled the world to develop new techniques to recycle such wastes. In this work, one of problematic and high volume global waste stream, i.e., end-of-life printed circuit boards (PCBs), was examined for recycling. Using ion-exchange (adsorption/desorption) technique, heavy metals (Cu, Zn, Ni, and Pb), and Al were selectively recovered and separated. Three macroporous ion-exchange resins (Amberlite IRA 743, Lewatit TP 208, and Lewatit TP 260) were applied to extract, isolate and concentrate the heavy metals. The process factors (resin load, solution temperature and contact time) were investigated and kinetic behavior of adsorption was studied using three different models. Based on the process factors, the functionality and selectivity of the ion-exchange resins were discussed. A negligible amount of Ni and Zn adsorption on the surface of resin 743 indicates its high selectivity. This study also proves that selective isolation of hazardous elements such as Pb can be performed under specified sorption parameters. Also, the distribution of adsorbed cations throughout the resin beads was studied via elemental analysis. The distribution of Cu as the main element was not homogenous that signifies the higher practical capacity of the ion-exchanger. Finally, a stripping step was applied to modify the working media and to examine the reversibility and selectivity of the desorption process.

7.
Sci Rep ; 9(1): 10096, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300683

RESUMO

Manganese sulphide (MnS) is one of the major non-metallic inclusions in steel with huge impact on steel property. In the case of high carbon steel, due to higher sulphur content and its brittleness, controlling MnS formation is one of the main issues. MnS has a complicated precipitation mechanism during solidification in liquid and solid steel and at the interface with oxide inclusions. Higher sulphur content, lower melting point and different oxide inclusions in high carbon steel will cause MnS precipitation at different stages. In this study, different stages of MnS precipitation from liquid and/or solid in high carbon steel and at the interface with oxide inclusion were investigated comprehensively via two different types of High Temperature Confocal Scanning Laser Microscope (HTCSLM). Samples were analysed further using SEM-EDS for better understanding the pertaining mechanisms. MnS precipitation on the surface of liquid steel was observed in situ in a HTCSLM by the use of a concentric solidification technique. Additionally, formation of MnS following solidification and at the interfaces of oxide inclusions, was investigated in situ in a HTCSLM, which has a uniform temperature profile across the specimen. These comprehensive descriptions about different stages of MnS precipitation in high carbon steel have been conducted for the first time and provide crucial information for controlling MnS morphology in high carbon steel.

8.
Sci Rep ; 9(1): 1559, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733498

RESUMO

When corrosion is the dominant failure factor in industrial application and at the same time high mechanical properties are required, aluminum bronze is one of the best candidates. Hence, there is a continuous quest for increasing the lifetime of aluminum bronze alloys through enhancing the abrasion and corrosion resistance. Existing methods are based on modifying the bulk properties of alloy or surface modification which required sophisticated equipment and process control. This approach has limited application for advanced components because of high price and difficulty to apply. In this research, we developed an innovative approach to enhance the corrosion and abrasion resistance of aluminum bronze through selective surface diffusion process. In this process, we have used waste materials as input and the modified surface has formed in a single and green process. New surface structure consists of finely dispersed kappa phase (χ ) in uniform alpha (α) solid solution matrix. Results have demonstrated that this uniform diffused modified surface layer has improved hardness of the base material and both corrosion and abrasion resistance has increased. This novel surface modification technique has opened a pathway for using waste materials as input for surface modification of aluminum bronze to meet the needs of industrial applications in a cost effective and environmentally friendly way.

9.
Environ Sci Pollut Res Int ; 26(24): 24417-24429, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31230240

RESUMO

Despite attempts to enhance the recycling of waste printed circuit boards (WPCBs), the simultaneous recovery of major metals of WPCBs using an efficient approach is still a great challenge. This study mainly concerned with applying an effective statistical tool to optimize the recovery of metal content (i.e., Cu, Fe, Zn, Pb, Ni, Sn, and Al) embedded in WPCBs using a leaching agent without any additive or oxidative agent. Another target was to optimize a multi-response recovery process by minimizing time, energy, and acid consumption during the leaching. Effective parameters and their levels, including leaching time (20-60 min), temperature (25-45 °C), solid to liquid (S/L) ratio (1/8-1/20 g/ml), and acid molarity (1-2.7 M), were optimized. A well-established statistical approach (i.e., response surface methodology (RSM)) was applied to precisely quantify and interpret the effects. General optimum conditions for nine responses were introduced with the desirability of ≈ 85%. Finally, the solid residue of leaching was characterized and results showed the morphology, structure, and composition of the residue content (i.e., polymers and ceramics) remained the same after the leaching, indicating the neutral behavior of the leaching process on these two materials. Also, thermal behavior and phase analysis of the original WPCBs and leaching residue were compared and analyzed. Graphical abstract.


Assuntos
Resíduo Eletrônico/análise , Metais Pesados/análise , Reciclagem/métodos , Ácidos/química , Cobre/análise
10.
Materials (Basel) ; 11(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487430

RESUMO

Steel has played a primary role as structural and fabricating materials in various industrial applications-including the construction sector. One of the most important properties of steel that required a constant improvement is corrosion resistance specifically in corrosive environment. For this purpose, various approaches have been conducted through different heat treatment parameters to compare its microstructural engineering on chemical and mechanical properties. In this paper, correlation of different microstructure on corrosion resistance and hardness properties have been investigated. Three different heat treatment cycle have been applied on carbon steel with same composition to prepare dual-structure (DS) steel that consisted of ferrite/pearlite and triple-structure (TS) with ferrite/pearlite/bainite and ferrite/bainite/martensite. Phase transformation during heat treatment process was analyzed through in-situ ultra-high temperature confocal microscopy. Effect of corrosion behavior on these steels was investigated by Tafel plot, Scanning Electron Microscopy (SEM), 3D laser scanning confocal microscopy (3DLSCM), and calculation of phase volume fraction by ImageJ. Mechanical test was conducted by Vickers hardness test. It has been found that TS steels that have improvement in corrosion resistance accounted around 5.31% and hardness value for up to 27.34% more than DS steel, because of tertiary phase-bainite/martensite. This corrosion rate was reduced due to decreased numbers of pit growth and lower level of boundary corrosion as bainite/martensite phases emerged.

11.
Materials (Basel) ; 11(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322093

RESUMO

The abundant application of metallized paper and the quick growth of their wastes lead to the removal of a huge amount of valuable resources from economic cycle. In this work, for the first-time, the thermal micronizing technique has been used to directly transform the metallized paper wastes to Al-Si nano-rod and Al nano-particles for use as the input in different manufacturing sectors such as additive manufacturing or composite fabrication. Structure of metallized paper has been investigated using FT-IR analysis and first-principle plane-wave calculation. Then, based on the structure of metallized paper, thermal micronizing technique has been modified to directly transform this waste into nano materials. Structure of nano-particles and nano-rods has been investigated using SEM, TEM, and XPS analysis. Results showed two main Al-Si nano-rod and Al nano-particle morphologies created as a result of the different surface tensions, which facilitate their separation by Eddy current separation technique. These quick transformation and facile separation together make this technique a unique process to deal with this complex waste and producing value-added products which can re-capture these high value materials from waste and make the reforming economically viable.

12.
Sci Rep ; 7(1): 13288, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038529

RESUMO

This study identifies for the first time, the hybrid structure of the white layer in high carbon steel and describes its formation mechanism and properties. The so-called 'white layer' in steel forms during high strain rate deformation and appears featureless under optical microscopy. While many researchers have investigated the formation of the white layer, there has been no definitive study, nor is there sufficient evidence to fully explain the formation, structure and properties of the layer. In this study, the formation, morphology and mechanical properties of the white layer was determined following impact testing, using a combination of optical and SE- microscopy, HR-EBSD, TKD and TEM as well as nano-indentation hardness measurements and FE modelling. The phase transformation and recrystallization within and near the white layer was also investigated. The microstructure of the steel in the white layer consisted of nano-sized grains of martensite. A very thin layer of austenite with nano sized grains was identified within the white layer by HR-EBSD techniques, the presence of which is attributed to a thermally-induced reverse phase transformation. Overall, the combination of phase transformations, strain hardening and grain refinement led to a hybrid structure and an increase in hardness of the white layer.

13.
Waste Manag ; 50: 173-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26876777

RESUMO

Large increasing production volumes of automotive shredder residue (ASR) and its hazardous content have raised concerns worldwide. ASR has a desirable calorific value, making its pyrolysis a possible, environmentally friendly and economically viable solution. The present work focuses on the pyrolysis of ASR at temperatures between 950 and 1550°C. Despite the high temperatures, the energy consumption can be minimized as the decomposition of ASR can be completed within a short time. In this study, the composition of ASR was investigated. ASR was found to contain about 3% Ti and plastics of high calorific value such as polypropylene, polyethylene, polycarbonate and polyurethane. Based on thermogravimetric analysis (TGA) of ASR, the non-isothermal degradation kinetic parameters were determined using Coats-Redfern's and Freeman and Carroll methods. The evolved gas analysis indicated that the CH4 was consumed by the reduction of some oxides in ASR. The reduction reactions and the presence of Ti, silicates, C and N in ASR at 1550°C favor the formation of specific ceramics such as TiN and SiC. The presence of nano-ceramics along with a highly-crystalline graphitic carbon in the pyrolysis residues obtained at 1550°C was confirmed by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Raman imaging microscope (RIM) analyses.


Assuntos
Cerâmica/análise , Grafite/análise , Incineração/métodos , Resíduos Industriais/análise , Nanoestruturas/análise , Automóveis , Cerâmica/economia , Grafite/economia , Nanoestruturas/economia
14.
Sci Rep ; 6: 38740, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929096

RESUMO

Abrasion and corrosion resistant steel has attracted considerable interest for industrial application as a means of minimising the costs associated with product/component failures and/or short replacement cycles. These classes of steels contain alloying elements that increase their resistance to abrasion and corrosion. Their benefits, however, currently come at a potentially prohibitive cost; such high performance steel products are both more technically challenging and more expensive to produce. Although these methods have proven effective in improving the performance of more expensive, high-grade steel components, they are not economically viable for relatively low cost steel products. New options are needed. In this study, a complex industrial waste stream has been transformed in situ via precisely controlled high temperature reactions to produce an ultrahard ceramic surface on steel. This innovative ultrahard ceramic surface increases both the hardness and compressive strength of the steel. Furthermore, by modifying the composition of the waste input and the processing parameters, the ceramic surface can be effectively customised to match the intended application of the steel. This economical new approach marries industry demands for more cost-effective, durable steel products with global imperatives to address resource depletion and environmental degradation through the recovery of resources from waste.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa