RESUMO
Melanoma is the most aggressive and deadly skin cancer. The difficulty in its treatment arises from its ability to suppress the immune system, making it crucial to find a substance that increases anti-tumor immunity. C-phycocyanin (C-PC) appears as a promising bioactive, with multifaceted effects against several cancers, but its efficacy against melanoma has only been tested in vitro. Therefore, we investigated C-PC's the anti-tumor and immunomodulatory action in a murine melanoma model. The tumor was subcutaneously induced in C57BL/6 mice by injecting B16F10 cells. The animals were injected subcutaneously with C-PC for three consecutive days. After euthanasia, the tumor was weighed and measured. The inguinal lymph node was removed, and the cells were stained with antibodies and analyzed by flow cytometry. The heart, brain and lung were analyzed by histopathology. C-PC increased the B cell population of the inguinal lymph node in percentage and absolute number. The absolute number of T lymphocytes and myeloid cells were also increased in the groups treated with C-PC. Thus, C-PC showed a positive immunomodulatory effect both animals with and without tumor. However, this effect was more pronounced in the presence of the tumor. Positive immune system modulation may be associated with a reduction in tumor growth in animals treated with C-PC. Administration of C-PC subcutaneously did not cause organ damage. Our findings demonstrate C-PC's immunomodulatory and anti-melanoma action, paving the way for clinical research with this bioactive.
Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Camundongos , Ficocianina/farmacologia , Ficocianina/uso terapêutico , Camundongos Endogâmicos C57BL , Neoplasias Cutâneas/tratamento farmacológico , ImunomodulaçãoRESUMO
Melanoma is a skin cancer with a high mortality rate due to its invasive characteristics. Currently, immunotherapy and targeted therapy increase patient survival but are ineffective in the advanced stages of the tumor. Quercetin (Que) is a natural compound that has demonstrated chemopreventive effects against different types of tumors. This review provides evidence for the therapeutic potential of Que in melanoma and identifies its main targets. The Scopus, Web of Science, and PubMed databases were searched, and studies that used free or encapsulated Que in melanoma models were included, excluding associations, analogs, and extracts. As a result, 73 articles were retrieved and their data extracted. Que has multiple cellular targets in melanoma models, and the main regulated pathways are cell death, redox metabolism, metastasis, and melanization. Que was also able to regulate important targets of signaling pathways, such as PKC, RIG-I, STAT, and P53. In murine models, treatment with Que reduced tumor growth and weight, and decreased metastatic nodules and angiogenic vasculature. Several studies have incorporated Que into carriers, demonstrating improved efficacy and delivery to tumors. Thus, Que is a promising therapeutic agent for the treatment of melanoma; however, further studies are needed to evaluate its effectiveness in clinical trials.
Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Quercetina/farmacologia , Quercetina/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Melanoma Maligno CutâneoRESUMO
BACKGROUND: Ouabain (OUA) is a cardiotonic glycoside originally extracted from African plants. It has also been described as an endogenous component in mammals, being released in stress situations mainly by the adrenal gland. OUA has been reported to be capable of inhibiting mitogen-induced lymphocyte proliferation and also affects B and T lymphocytes. OBJECTIVES: The aim of this work is to show the effects of OUA in peripheral T lymphocytes. METHODS: In the in vivo experiments, mice were injected intraperitoneally for 3 consecutive days with RPMI medium (control group) or 0.56 mg/kg of OUA diluted in RPMI medium (OUA group). On the fourth day, spleen or mesenteric lymph nodes were removed. RESULTS: OUA significantly reduced the number of CD4+ T lymphocytes in the spleen, especially regulatory T cells (Tregs). In vitro OUA did not inhibit the proliferation of CD4+T lymphocytes stimulated with anti-CD3 neither was able to induce the apoptosis of CD4+ nor Tregs. There was no increase in the number or percentage of T lymphocytes in the mesenteric lymph nodes, suggesting that there was no preferential accumulation of these cells in this organ. Secretion of IL-2 by activated T lymphocytes was decreased by the OUA, explaining at least in part the reduction of Tregs, since this cytokine is involved in the peripheral conversion and maintenance of Tregs. CONCLUSION: The impact of this reduction in autoimmune diseases, allergy and cancer as well as the potential use of OUA as a therapeutic approach in tumor treatment still needs more investigation.
Assuntos
Cardiotônicos/farmacologia , Interleucina-2/metabolismo , Ouabaína/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Feminino , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Baço/efeitos dos fármacos , Baço/imunologia , Linfócitos T Reguladores/imunologiaRESUMO
Ouabain (OUA) is a glycoside shown to modulate B and T lymphocytes. Nevertheless, ouabain effects on B16F10 melanoma immune response, a mouse lineage that mimics human melanoma, are still unknown. Our aim was to study how OUA in vivo treatment modulates lymphocytes and if it improves the response against B16F10 cells. C57BL/6 mice were pre-treated with intraperitoneal (i.p) injection of OUA (0.56 mg/Kg) for three consecutive days. On the 4th day, 106 B16F10 cells or vehicle were i.p. injected. Animals were euthanized on days 4th and 21st for organs removal and subsequent lymphocyte analyses by flow cytometry. In vivo ouabain-treatment reduced regulatory T cells in the spleen in both melanoma and non-melanoma groups. Ouabain preserved the number and percentage of B lymphocytes in peripheral organs of melanoma-injected mice. Melanoma-injected mice pre-treated with OUA also survive longer. Our findings contribute to a better understanding of OUA immunological effects in a melanoma model.
Assuntos
Antineoplásicos/uso terapêutico , Linfócitos B/imunologia , Melanoma/tratamento farmacológico , Ouabaína/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Linfócitos T Reguladores/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Imunomodulação , Injeções Intraperitoneais , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BLRESUMO
The effects of hyperthyroidism on B-cell physiology are still poorly known. In this study, we evaluated the influence of high-circulating levels of 3,5,3'-triiodothyronine (T3) on bone marrow, blood, and spleen B-cell subsets, more specifically on B-cell differentiation into plasma cells, in C57BL/6 mice receiving daily injections of T3 for 14 days. As analyzed by flow cytometry, T3-treated mice exhibited increased frequencies of pre-B and immature B-cells and decreased percentages of mature B-cells in the bone marrow, accompanied by an increased frequency of blood B-cells, splenic newly formed B-cells, and total CD19(+)B-cells. T3 administration also promoted an increase in the size and cellularity of the spleen as well as in the white pulp areas of the organ, as evidenced by histological analyses. In addition, a decreased frequency of splenic B220(+) cells correlating with an increased percentage of CD138(+) plasma cells was observed in the spleen and bone marrow of T3-treated mice. Using enzyme-linked immunospot assay, an increased number of splenic immunoglobulin-secreting B-cells from T3-treated mice was detected ex vivo. Similar results were observed in mice immunized with hen egg lysozyme and aluminum adjuvant alone or together with treatment with T3. In conclusion, we provide evidence that high-circulating levels of T3 stimulate plasma cytogenesis favoring an increase in plasma cells in the bone marrow, a long-lived plasma cell survival niche. These findings indicate that a stimulatory effect on plasma cell differentiation could occur in untreated patients with Graves' disease.