Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inflammopharmacology ; 31(5): 2349-2368, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37106237

RESUMO

Oral submucous fibrosis (OSF) is a chronic, progressive, and precancerous condition mainly caused by chewing areca nut. Currently, OSF therapy includes intralesional injection of corticosteroids with limited therapeutic success in disease management. Therefore, a combined approach of in silico, in vitro and in vivo drug development can be helpful. Polyphenols are relatively safer than other synthetic counterparts. We used selected polyphenols to shortlist the most suitable compound by in silico tools. Based on the in silico results, epigallocatechin-3-gallate (EGCG), quercetin (QUR), resveratrol, and curcumin had higher affinity and stability with the selected protein targets, transforming growth factor beta-1 (TGF-ß1), and lysyl oxidase (LOX). The efficacy of selected polyphenols was studied in primary buccal mucosal fibroblasts followed by in vivo areca nut extract induced rat OSF model. In in vitro studies, the induced fibroblast cells were treated with EGCG and QUR. EGCG was safer at higher concentrations and more efficient in reducing TGF-ß1, collagen type-1A2 and type-3A1 mRNA expression than QUR. In vivo studies confirmed that the EGCG hydrogel was efficient in improving the disease conditions compared to the standard treatment betamethasone injection with significant reduction in TGF-ß1 and collagen concentrations with increase in mouth opening. EGCG can be considered as a potential, safer and efficient phytomolecule for OSF therapy and its mucoadhesive topical formulation help in the improvement of patient compliance without any side effects. Highlights Potential polyphenols were shortlisted to treat oral submucous fibrosis (OSF) using in silico tools Epigallocatechin 3-gallate (EGCG) significantly reduced TGF-ß1 and collagen both in vitro and in vivo EGCG hydrogel enhanced antioxidant defense, modulated inflammation by reducing TGF-ß1 and improved mouth opening in OSF rat model.


Assuntos
Fibrose Oral Submucosa , Humanos , Animais , Ratos , Fibrose Oral Submucosa/tratamento farmacológico , Fibrose Oral Submucosa/induzido quimicamente , Fibrose Oral Submucosa/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Polifenóis/farmacologia , Colágeno , Hidrogéis/efeitos adversos
2.
Mol Biol Res Commun ; 7(3): 97-106, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30426027

RESUMO

The DNA structure checkpoint protein Rad26ATRIP is also required for an interphase microtubule damage response. This checkpoint delays spindle pole body separation and entry into mitosis following treatment of cells with microtubule poisons. This checkpoint requires cytoplasmic Rad26ATRIP, which is compromised by the rad26:4A allele that inhibits cytoplasmic accumulation of Rad26ATRIP following microtubule damage. The rad26::4a allele also disrupts minichromosome stability and cellular morphology, suggesting that the interphase microtubule damage checkpoint pathway operates in an effort to maintain chromosome stability and proper cell shape. To identify other proteins of the Rad26-dependent interphase microtubule damage response, we used ultra violet (UV) radiation to identify extragenic interaction suppressors of the rad26::4A growth defect on microtubule poisons. One suppressor mutation, which we named mut2a, permitted growth of rad26:4A cells on MBC media and conferred sensitivity to a microtubulin poison upon genetic outcross. In an attempt to clone this interaction suppressor using a genomic library complementation strategy, we instead isolated pap1 + as an extracopy suppressor of the mut2a growth defect. We discuss the mechanism by which pap1 + overexpression may allow growth of mut2a cells in conditions that destabilize microtubules.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa