Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045310

RESUMO

Synapses are actively dismantled to mediate circuit refinement, but the developmental pathways that regulate synaptic disassembly are largely unknown. We have previously shown that the epithelial sodium channel ENaC/UNC-8 triggers an activity-dependent mechanism that drives the removal of presynaptic proteins liprin-α/SYD-2, Synaptobrevin/SNB-1, RAB-3 and Endophilin/UNC-57 in remodeling GABAergic neurons in C. elegans (Miller-Fleming et al., 2016). Here, we report that the conserved transcription factor Iroquois/IRX-1 regulates UNC-8 expression as well as an additional pathway, independent of UNC-8, that functions in parallel to dismantle functional presynaptic terminals. We show that the additional IRX-1-regulated pathway is selectively required for the removal of the presynaptic proteins, Munc13/UNC-13 and ELKS, which normally mediate synaptic vesicle fusion and neurotransmitter release. Our findings are notable because they highlight the key role of transcriptional regulation in synapse elimination during development and reveal parallel-acting pathways that coordinate synaptic disassembly by removing specific active zone proteins.SIGNIFICANT STATEMENT:Synaptic pruning is a conserved feature of developing neural circuits but the mechanisms that dismantle the presynaptic apparatus are largely unknown. We have determined that synaptic disassembly is orchestrated by parallel-acting mechanisms that target distinct components of the active zone. Thus, our finding suggests that synaptic disassembly is not accomplished by en masse destruction but depends on mechanisms that dismantle the structure in an organized process.

2.
Dev Biol ; 432(2): 248-257, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29031632

RESUMO

The dendritic processes of nociceptive neurons transduce external signals into neurochemical cues that alert the organism to potentially damaging stimuli. The receptive field for each sensory neuron is defined by its dendritic arbor, but the mechanisms that shape dendritic architecture are incompletely understood. Using the model nociceptor, the PVD neuron in C. elegans, we determined that two types of PVD lateral branches project along the dorsal/ventral axis to generate the PVD dendritic arbor: (1) Pioneer dendrites that adhere to the epidermis, and (2) Commissural dendrites that fasciculate with circumferential motor neuron processes. Previous reports have shown that the LIM homeodomain transcription factor MEC-3 is required for all higher order PVD branching and that one of its targets, the claudin-like membrane protein HPO-30, preferentially promotes outgrowth of pioneer branches. Here, we show that another MEC-3 target, the conserved TFIIA-like zinc finger transcription factor EGL-46, adopts the alternative role of specifying commissural dendrites. The known EGL-46 binding partner, the TEAD transcription factor EGL-44, is also required for PVD commissural branch outgrowth. Double mutants of hpo-30 and egl-44 show strong enhancement of the lateral branching defect with decreased numbers of both pioneer and commissural dendrites. Thus, HPO-30/Claudin and EGL-46/EGL-44 function downstream of MEC-3 and in parallel acting pathways to direct outgrowth of two distinct classes of PVD dendritic branches.


Assuntos
Dendritos/genética , Dendritos/metabolismo , Nociceptores/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/fisiologia , Proteínas de Membrana/metabolismo , Nociceptores/fisiologia , Elementos Reguladores de Transcrição/genética , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Dedos de Zinco
3.
Dev Cell ; 57(15): 1789-1791, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35944475

RESUMO

How synaptogenic signals trigger the targeted delivery of synaptic material is a fundamental question in neuroscience. In this issue of Developmental Cell, Balseiro-Gomez et al. identify a mechanism through which local synatogenic pathways control synaptic cargo delivery.


Assuntos
Comunicação Celular , Dineínas , Dineínas/metabolismo
4.
Dev Cell ; 56(23): 3235-3249.e4, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34741804

RESUMO

Electrical synapses are established between specific neurons and within distinct subcellular compartments, but the mechanisms that direct gap junction assembly in the nervous system are largely unknown. Here, we show that a developmental program tunes cAMP signaling to direct the neuron-specific assembly and placement of electrical synapses in the C. elegans motor circuit. We use live-cell imaging to visualize electrical synapses in vivo and an optogenetic assay to confirm that they are functional. In ventral A class (VA) motor neurons, the UNC-4 transcription factor blocks expression of cAMP antagonists that promote gap junction miswiring. In unc-4 mutants, VA electrical synapses are established with an alternative synaptic partner and are repositioned from the VA axon to soma. cAMP counters these effects by driving gap junction trafficking into the VA axon for electrical synapse assembly. Thus, our experiments establish that cAMP regulates gap junction trafficking for the biogenesis of functional electrical synapses.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , AMP Cíclico/farmacologia , Sinapses Elétricas/fisiologia , Proteínas de Homeodomínio/metabolismo , Neurônios Motores/fisiologia , Frações Subcelulares/fisiologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Axônios/efeitos dos fármacos , Axônios/fisiologia , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Conexinas/genética , Conexinas/metabolismo , Sinapses Elétricas/efeitos dos fármacos , Junções Comunicantes , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Neurônios Motores/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos
5.
Curr Biol ; 30(1): 1-16.e13, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31839447

RESUMO

Sleep requires sleep-active neurons that depolarize to inhibit wake circuits. Sleep-active neurons are under the control of homeostatic mechanisms that determine sleep need. However, little is known about the molecular and circuit mechanisms that translate sleep need into the depolarization of sleep-active neurons. During many stages and conditions in C. elegans, sleep requires a sleep-active neuron called RIS. Here, we defined the transcriptome of RIS and discovered that genes of the epidermal growth factor receptor (EGFR) signaling pathway are expressed in RIS. Because of cellular stress, EGFR directly activates RIS. Activation of EGFR signaling in the ALA neuron has previously been suggested to promote sleep independently of RIS. Unexpectedly, we found that ALA activation promotes RIS depolarization. Our results suggest that ALA is a drowsiness neuron with two separable functions: (1) it inhibits specific behaviors, such as feeding, independently of RIS, (2) and it activates RIS. Whereas ALA plays a strong role in surviving cellular stress, surprisingly, RIS does not. In summary, EGFR signaling can depolarize RIS by an indirect mechanism through activation of the ALA neuron that acts upstream of the sleep-active RIS neuron and through a direct mechanism using EGFR signaling in RIS. ALA-dependent drowsiness, rather than RIS-dependent sleep bouts, appears to be important for increasing survival after cellular stress, suggesting that different types of behavioral inhibition play different roles in restoring health. VIDEO ABSTRACT.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Neurônios/fisiologia , Transdução de Sinais , Sono/fisiologia , Animais
6.
Elife ; 82019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31584430

RESUMO

Dendritic spines are specialized postsynaptic structures that transduce presynaptic signals, are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been reported in C. elegans (Philbrook et al., 2018), suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we used super-resolution microscopy, electron microscopy, live-cell imaging and genetics to show that C. elegans motor neurons have functional dendritic spines that: (1) are structurally defined by a dynamic actin cytoskeleton; (2) appose presynaptic dense projections; (3) localize ER and ribosomes; (4) display calcium transients triggered by presynaptic activity and propagated by internal Ca++ stores; (5) respond to activity-dependent signals that regulate spine density. These studies provide a solid foundation for a new experimental paradigm that exploits the power of C. elegans genetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.


Assuntos
Caenorhabditis elegans/citologia , Espinhas Dendríticas/ultraestrutura , Neurônios Motores/citologia , Animais , Microscopia Intravital , Microscopia Eletrônica , Microscopia de Fluorescência , Organelas/ultraestrutura
7.
Neuron ; 100(6): 1414-1428.e10, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30392795

RESUMO

Finding food and remaining at a food source are crucial survival strategies. We show how neural circuits and signaling molecules regulate these food-related behaviors in Caenorhabditis elegans. In the absence of food, AVK interneurons release FLP-1 neuropeptides that inhibit motorneurons to regulate body posture and velocity, thereby promoting dispersal. Conversely, AVK photoinhibition promoted dwelling behavior. We identified FLP-1 receptors required for these effects in distinct motoneurons. The DVA interneuron antagonizes signaling from AVK by releasing cholecystokinin-like neuropeptides that potentiate cholinergic neurons, in response to dopaminergic neurons that sense food. Dopamine also acts directly on AVK via an inhibitory dopamine receptor. Both AVK and DVA couple to head motoneurons by electrical and chemical synapses to orchestrate either dispersal or dwelling behavior, thus integrating environmental and proprioceptive signals. Dopaminergic regulation of food-related behavior, via similar neuropeptides, may be conserved in mammals.


Assuntos
Dopamina/farmacologia , Alimentos , Locomoção/efeitos dos fármacos , Vias Neurais/fisiologia , Neuropeptídeos/farmacologia , Sensação/fisiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Dopamina/metabolismo , Vias Neurais/efeitos dos fármacos , Neuropeptídeos/metabolismo , Optogenética , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/fisiologia , Células Receptoras Sensoriais/fisiologia
8.
Front Mol Neurosci ; 8: 12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26005403

RESUMO

Microglia, the resident immune cells of the brain parenchyma, are highly responsive to tissue injury. Following cell damage, microglial processes redirect their motility from randomly scouting the extracellular space to specifically reaching toward the compromised tissue. While the cell morphology aspects of this defense mechanism have been characterized, the intracellular events underlying these responses remain largely unknown. Specifically, the role of intracellular Ca(2+) dynamics has not been systematically investigated in acutely activated microglia due to technical difficulty. Here we used live two-photon imaging of the mouse cortex ubiquitously expressing the genetically encoded Ca(2+) indicator GCaMP5G and fluorescent marker tdTomato in central nervous system microglia. We found that spontaneous Ca(2+) transients in microglial somas and processes were generally low (only 4% of all microglia showing transients within 20 min), but baseline activity increased about 8-fold when the animals were treated with LPS 12 h before imaging. When challenged with focal laser injury, an additional surge in Ca(2+) activity was observed in the somas and protruding processes. Notably, coherent and simultaneous Ca(2+) rises in multiple microglial cells were occasionally detected in LPS-treated animals. We show that Ca(2+) transients were pre-dominantly mediated via purinergic receptors. This work demonstrates the usefulness of genetically encoded Ca(2+) indicators for investigation of microglial physiology.

9.
Front Mol Neurosci ; 8: 10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25926768

RESUMO

Complex interactions between networks of astrocytes and neurons are beginning to be appreciated, but remain poorly understood. Transgenic mice expressing fluorescent protein reporters of cellular activity, such as the GCaMP family of genetically encoded calcium indicators (GECIs), have been used to explore network behavior. However, in some cases, it may be desirable to use long-established rat models that closely mimic particular aspects of human conditions such as Parkinson's disease and the development of epilepsy following status epilepticus. Methods for expressing reporter proteins in the rat brain are relatively limited. Transgenic rat technologies exist but are fairly immature. Viral-mediated expression is robust but unstable, requires invasive injections, and only works well for fairly small genes (<5 kb). In utero electroporation (IUE) offers a valuable alternative. IUE is a proven method for transfecting populations of astrocytes and neurons in the rat brain without the strict limitations on transgene size. We built a toolset of IUE plasmids carrying GCaMP variants 3, 6s, or 6f driven by CAG and targeted to the cytosol or the plasma membrane. Because low baseline fluorescence of GCaMP can hinder identification of transfected cells, we included the option of co-expressing a cytosolic tdTomato protein. A binary system consisting of a plasmid carrying a piggyBac inverted terminal repeat (ITR)-flanked CAG-GCaMP-IRES-tdTomato cassette and a separate plasmid encoding for expression of piggyBac transposase was employed to stably express GCaMP and tdTomato. The plasmids were co-electroporated on embryonic days 13.5-14.5 and astrocytic and neuronal activity was subsequently imaged in acute or cultured brain slices prepared from the cortex or hippocampus. Large spontaneous transients were detected in slices obtained from rats of varying ages up to 127 days. In this report, we demonstrate the utility of this toolset for interrogating astrocytic and neuronal activity in the rat brain.

10.
PLoS One ; 9(8): e103861, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25093893

RESUMO

The nicotinic acetylcholine receptor alpha 7 (α7) is a ligand-activated ion channel that contributes to a diversity of cellular processes involved in development, neurotransmission and inflammation. In this report the expression of α7 was examined in the mouse developing and adult adrenal gland that expresses a green fluorescent protein (GFP) reporter as a bi-cistronic extension of the endogenous α7 transcript (α7(G)). At embryonic day 12.5 (E12.5) α7(G) expression was associated with the suprarenal ganglion and precursor cells of the adrenal gland. The α7(G) cells are catecholaminergic chromaffin cells as reflected by their progressive increase in the co-expression of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) that is complete by E18.5. In the adult, α7(G) expression is limited to a subset of chromaffin cells in the adrenal medulla that cluster near the border with the adrenal cortex. These chromaffin cells co-express α7(G), TH and DBH, but they lack phenylethanolamine N-methyltransferase (PNMT) consistent with only norepinephrine (NE) synthesis. These cell groups appear to be preferentially innervated by pre-ganglionic afferents identified by the neurotrophin receptor p75. No afferents identified by beta-III tubulin, neurofilament proteins or p75 co-expressed α7(G). Occasional α7(G) cells in the pre-E14.5 embryos express neuronal markers consistent with intrinsic ganglion cells and in the adult some α7(G) cells co-express glutamic acid decarboxylase. The transient expression of α7 during adrenal gland development and its prominent co-expression by a subset of NE chromaffin cells in the adult suggests that the α7 receptor contributes to multiple aspects of adrenal gland development and function that persist into adulthood.


Assuntos
Glândulas Suprarrenais/embriologia , Glândulas Suprarrenais/crescimento & desenvolvimento , Receptor Nicotínico de Acetilcolina alfa7/genética , Glândulas Suprarrenais/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Catecolaminas/metabolismo , Diferenciação Celular/genética , Células Cromafins/metabolismo , Células Cromafins/fisiologia , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Norepinefrina/biossíntese , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
11.
Neuron ; 83(5): 1058-72, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25155958

RESUMO

New strategies for introducing genetically encoded activity indicators into animal models facilitate the investigation of nervous system function. We have developed the PC::G5-tdT mouse line that expresses the GCaMP5G calcium indicator in a Cre-dependent fashion. Instead of targeting the ROSA26 locus, we inserted the reporter cassette nearby the ubiquitously expressed Polr2a gene without disrupting locus integrity. The indicator was tagged with IRES-tdTomato to aid detection of positive cells. This reporter system is effective in a wide range of developmental and cellular contexts. We recorded spontaneous cortical calcium waves in intact awake newborns and evaluated concentration-dependent responses to odorants in the adult olfactory bulb. Moreover, PC::G5-tdT effectively reports intracellular calcium dynamics in somas and fine processes of astrocytes and microglial cells. Through electrophysiological and behavioral analyses, we determined that GCaMP5G expression had no major impact on nervous system performance. PC::G5-tdT will be instrumental for a variety of brain mapping experiments.


Assuntos
Cálcio/metabolismo , Genes Reporter/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , RNA Polimerase II/metabolismo , Vias Aferentes/fisiologia , Animais , Córtex Cerebral/fisiologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Integrases , Masculino , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , RNA Polimerase II/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Vibrissas/inervação
12.
Artigo em Inglês | MEDLINE | ID: mdl-21897809

RESUMO

Olfactory sensory neurons (OSNs) are thought to use activity-dependent and independent mechanisms to regulate the expression of axon guidance genes. However, defining the molecular mechanisms that underlie activity-dependent OSN guidance has remained elusive. Only a handful of genes have been identified whose expression is regulated by activity. Interestingly, all of these genes have been shown to play a role in OSN axon guidance, underscoring the importance of identifying other genes regulated by activity. Furthermore, studies suggest that more than one downstream mechanism regulates target gene expression. Thus, both the number of genes regulated by activity and how many total mechanisms control this expression are not well understood. Here we identify delta protocadherin 10 (pcdh10) as a gene regulated by activity. Delta protocadherins are members of the cadherin superfamily, and pcdh10 is known to be important for axon guidance during development. We show pcdh10 is expressed in the nasal epithelium and olfactory bulb in patterns consistent with providing guidance information to OSNs. We use naris occlusion, genetic manipulations, and pharmacological assays to show pcdh10 can be regulated by activity, consistent with activation via the cyclic nucleotide-gated channel. Transgenic analysis confirms a potential role for pcdh10 in OSN axon guidance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa