Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189683

RESUMO

Wearable devices can provide timely, user-friendly, non- or minimally invasive, and continuous monitoring of human health. Recently, multidisciplinary scientific communities have made significant progress regarding fully integrated wearable devices such as sweat wearable sensors, saliva sensors, and wound sensors. However, the translation of these wearables into markets has been slow due to several reasons associated with the poor system-level performance of integrated wearables. The wearability consideration for wearable devices compromises many properties of the wearables. Besides, the limited power capacity of wearables hinders continuous monitoring for extended duration. Furthermore, peak-power operations for intensive computations can quickly create thermal issues in the compact form factor that interfere with wearability and sensor operations. Moreover, wearable devices are constantly subjected to environmental, mechanical, chemical, and electrical interferences and variables that can invalidate the collected data. This generates the need for sophisticated data analytics to contextually identify, include, and exclude data points per multisensor fusion to enable accurate data interpretation. This review synthesizes the challenges surrounding the wearable device integration from three aspects in terms of hardware, energy, and data, focuses on a discussion about hybrid integration of wearable devices, and seeks to provide comprehensive guidance for designing fully functional and stable wearable devices.

2.
Plant Dis ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853332

RESUMO

Nanhaia speciosa, commonly known as Niudali, is a medicinal woody vine belonging to the Leguminosae family. Valued for its culinary and medicinal properties, it is extensively cultivated, covering approximately 5,973 hm2 in the Guangxi Zhuang Autonomous Region of China. The edible tubers of this plant are reported to possess antibacterial and antioxidant effects (Luo et al., 2023; Shu et al., 2020). In July 2021, a Niudali plantation in Yulin, Guangxi, China (22°64'N; 110°29'E) exhibited leaf spot symptoms, with an incidence rate exceeding 40% across a 46,690 m2 area. Initially, small circular, pale yellow spots appeared on the leaves, which subsequently evolved into dark brown lesions surrounded by yellow halos, ultimately leading to foliage wilting. Leaves exhibiting typical symptoms were collected for pathogen investigation. The leaves were thoroughly washed with sterile water and small tissue fragments (5×5 mm) were excised from the lesion periphery. These fragments were surface-sterilized with 75% ethanol and 1% NaClO, rinsed three times with sterile water, and subsequently cultured on potato dextrose agar (PDA) at 28 °C in darkness for 7 days. Through single-spore isolation, seven isolates with similar morphological traits were obtained. After 7 days of incubation on PDA at 28 °C in dark, the colonies exhibited a white to grey coloration on the upper surface with abundant aerial hyphae, while the underside appeared dark black. The conidia, cylindrical or obclavate in shape, were straight, pale brown, and measured 30.1-128.9 µm × 4.8-15.0 µm (n=50). The morphological characteristics matched those of Corynespora sp.(Wang et al. 2021). For molecular identification, the isolate N5-2 underwent DNA sequence analysis using genomic DNA and primers ITS1/ITS4 and EF1-688F/EF1-1251R. The sequences (ITS: OP550425; TEF1-α: OQ117118) were deposited in GenBank, exhibiting 98% identity to C. cassiicola (OP981637) for TEF1-α and 99% homology to C. cassiicola (OP957070) for ITS. Based on the concatenated ITS and TEF1-α, a maximum likelihood phylogenetic analyses using MEGA7.0 clustered the isolate with C. cassiicola. Consequently, the fungus was identified as C. cassiicola based on its morphological and molecular features. In the pathogenicity test on 1-year-old Nanhaia speciosa seedlings, leaves were gently scratched and inoculated with mycelial plugs (5 mm). Control seedlings received PDA plugs. Five leaves per plant and five plants per treatment were selected for assessment. All seedling were maintained in a greenhouse (12/12h light/dark cycle, 25 ± 2°C, 90% humidity). After a 7-day incubation period, all leaves subjected to fungal inoculation exhibited symptoms consistent with those observed in the field, while control plants remained symptom-free. The fungus was successfully reisolated from the infected leaves in three successive trials, fulfilling Koch's postulates. While C. cassiicola is well-documented for inducing leaf spots on various plant species, including Jasminum nudiflorum, Strobilanthes cusia, Acanthus ilicifolius, Syringa species (Hu et al., 2023; Liu et al., 2023; Xie et al., 2021; Wang et al., 2021), this study represents the first report of C. cassiicola causing leaf spots on Nanhaia speciosa in China. The identification of this pathogen in Nanhaia speciosa has significant implications for future epidemiological investigations and serves as a valuable reference for controlling leaf spot disease in Nanhaia speciosa.

3.
Plant Dis ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146003

RESUMO

Millettia speciosa Champ, renowned for its diverse applications in traditional medicine, is extensively cultivated in the Guangxi region of China, spanning roughly 5,973 hectares. In July 2021, a plantation in Yulin, Guangxi, China (22°64'N; 110°29'E), exhibited severe leaf spot disease on M. speciosa. Notably, a 46,690 square meters area had over 40% leaf spot incidence. Initially, symptoms appeared as small, circular, pale-yellow lesions on the leaves, then turned into irregular, dark brown spots with yellow halos, leading to the wilt and defoliation of leaves. To identify the responsible pathogen, a total of five symptomatic leaves were collected and sterilized systematically. Small tissue segments (5×5 mm) from lesion peripheries were aseptically excised, then surface sterilized with 75% ethanol for 10 s, and 1% sodium hypochlorite (NaClO) for 3 min. Following this, the sterilized tissues were triple-rinsed with sterile water and cultured on potato dextrose agar (PDA) at 28 °C in the dark for 7 d. A total of seven isolates were obtained through single-spore isolation, and one representative isolate, N2-3, was selected for further analysis. After 7 d of incubation, colonies displayed flat, white, and extensively branched aerial hyphae. Over time, the reverse side of the colony changed from white to yellowish-white. The pycnidia were black with conidial droplets ranging from cream to pale yellow exuding from their ostioles. The α-conidia were one-celled, hyaline, ovoid to cylindrical, typically with one or two droplets, 2.6 to 5.9 ×1.4 to 3.9 µm (n=50). These morphological traits align with those of the genus Diaporthe, as reported by Li et al. (2022) and Crous et al. (2015). To identify the species, isolate N2-3 underwent sequencing of the internal transcribed spacer (ITS), ß-tubulin (BT), and translation elongation factor 1 alpha (EF1-α) sections (Huang et al. 2021). Obtained sequences of ITS, BT and EF1-α (Genebank accessions nos. OR600532, OR662169 and OR662168) displayed a 99% similarity to Diaporthe tulliensis (Genebank accessions nos. OP219651, ON932382, OL412437, respectively). Based on the concatenated ITS, BT and EF1-α, a neighbor-joining phylogenetic analyses using MEGA7.0 clustered with D. tulliensis. Therefore, the fungus was identified as D. tulliensis (teleomorph name) based on morphological and molecular features. A pathogenicity test was conducted on 1-year-old M. speciosa seedlings by gently abrading healthy leaves with sterilized toothpicks to create superficial wounds. Wounded leaves were then inoculated with 5 mm diameter mycelial plugs, while control seedlings received PDA plugs. Three leaves per plant and five plants per treatment were selected for assessment. All seedlings were kept in a controlled greenhouse (12/12h light/dark, 25 ± 2 °C, 90% humidity). After 7 d, the inoculated leaves showed symptoms like those in the field, while control plants remained healthy. The fungus was consistently reisolated from the infected leaves, satisfying Koch's postulates. Notably, D. tulliensis has caused Boston ivy leaf spot, bodhi tree leaf spot, cacao pod rot, and jasmine stem canker (Huang et al. 2021; Li et al. 2022; Serrato-Diaz et al. 2022; Hsu et al. 2023). This discovery is significant as it marks the first report of Diaporthe tulliensis causing leaf spot on Millettia speciossa in China, which has direct implications for the development of diagnostic tools and research into potential disease management strategies.

4.
Plant Dis ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415360

RESUMO

Star anise (Illicium verum) is an important economic and medical plant widely cultivated in Guangxi province, China. Its fruit can be used as spice and medicine (Wang et al. 2011). In recent years, anthracnose led to a serious decline in the production of star anise in Guangxi. In 2021, a survey conducted in CenwangLaoshan Reserve of Guangxi (24°21'N; 106°27'E) showed that the 2500 ha planting area had disease incidence greater than 80%. The leaf symptoms initially appeared as small spots, then expanded to round spots, finally becoming withered with grayish-white centers, surrounded by dark brown margins. Sometimes, small black acervuli were observed in the later stage. To explore the pathogen, infected leaves were collected and cut into small pieces (about 5 mm2) from the edge of the lesion, disinfected with 75% ethanol for 10 s, 1% NaClO for 1 min, washed with sterilized water and incubated on potato dextrose agar (PDA) plates at 28 °C in the dark. Ten single-spore isolates were obtained from the cultures. After 7 days on PDA at 28 °C, the colonies of 7 isolates were white with abundant aerial hyphae, gray-black with white-gray margins, and the other 3 isolates were light gray on the upper surface, and pink or orange on the underside. Representative isolates BS3-4 and BS3-1 were selected from 3 isolates and 7 isolates, respectively. Conidia of BS3-4 and BS3-1 were both hyaline, cylindrical, aseptate, smooth, apex obtuse, base truncate, and no significant differences (P > 0.05) in size between BS3-1 (13.22 to 5.38 × 3.89 to 1.99 µm) (n = 50) and BS3-4 (12.04 to 4.34 × 3.48 to 1.64 µm) (n = 50). These morphological characteristics were consistent with the Colletotrichum ssp. (Damm et al. 2012). The species identification of BS3-4 and BS3-1 was performed based on DNA sequence analysis. Genomic DNA was extracted as a template. Partial sequences of the rDNA internal transcribed spacer (ITS), actin gene (ACT), ß-tubulin2 (TUB2) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were amplified and sequenced (Weir et al. 2012). The sequences were deposited in GenBank (ITS:OQ062642-43; ACT:OQ067614-15; GAPDH:OQ067616-17;TUB2:OQ067618-19). Based on the concatenated sequences of the 4 genes (ITS-ACT- GAPDH -TUB2) of BS3-4 and BS3-1 as well as sequences of other Colletotrichum spp. obtained from GenBank, the Maximum likelihood (ML) tree which produced with IQ-TREE (Minh et al. 2020) revealed that the isolate BS3-1 was Colletotrichum horii, and BS3-4 was Colletotrichum fioriniae. Pathogenicity was confirmed on healthy leaves of 1-year-old star anise seedlings (cultivar Dahong), and the leaves were wounded by sterilized toothpicks, and were inoculated with 10 µl of conidial suspensions of BS3-1 and BS3-4 (106 conidia/ml). Control seedlings were inoculated with sterilized distilled water. Five leaves per plant and 3 plants per treatment were selected. All inoculated seedlings were maintained in the greenhouse (12/12h light/dark, 25 ± 2℃, 90% relative humidity). Wound sites inoculated with BS3-1 and BS3-4 both turned greenish-brown after 2 days and then turned light brown with water-soaked spots. Black (BS3-1) or orange (BS3-4) dots of acervuli developed after 6 days. The lesion diameter of BS3-1 (14.4 mm) was larger than that of BS3-4 (8.1 mm). No symptoms were observed on controls. BS3-1 and BS3-4 were re-isolated from inoculated leaves, fulfilling Koch's postulates. Anthracnose of star anise caused by C.horii has been reported in China (Liao et al. 2017). However, to our knowledge, this is the first report of C.fioriniae infecting star anise in China. Accurate pathogen identification in this study could provide a reference for the control of anthracnose on star anise.

5.
Small ; 18(22): e2107659, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35521934

RESUMO

The recent legalization of cannabidiol (CBD) to treat neurological conditions such as epilepsy has sparked rising interest across global pharmaceuticals and synthetic biology industries to engineer microbes for sustainable synthetic production of medicinal CBD. Since the process involves screening large amounts of samples, the main challenge is often associated with the conventional screening platform that is time consuming, and laborious with high operating costs. Here, a portable, high-throughput Aptamer-based BioSenSing System (ABS3 ) is introduced for label-free, low-cost, fully automated, and highly accurate CBD concentrations' classification in a complex biological environment. The ABS3 comprises an array of interdigitated microelectrode sensors, each functionalized with different engineered aptamers. To further empower the functionality of the ABS3 , unique electrochemical features from each sensor are synergized using physics-guided multidimensional analysis. The capabilities of this ABS3 are demonstrated by achieving excellent CBD concentrations' classification with a high prediction accuracy of 99.98% and a fast testing time of 22 µs per testing sample using the optimized random forest (RF) model. It is foreseen that this approach will be the key to the realistic transformation from fundamental research to system miniaturization for diagnostics of disease biomarkers and drug development in the field of chemical/bioanalytics.


Assuntos
Canabidiol , Canabidiol/uso terapêutico , Ensaios de Triagem em Larga Escala , Aprendizado de Máquina , Nucleotídeos , Física
6.
J Asian Nat Prod Res ; 23(2): 110-116, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31885279

RESUMO

A couple of new cycloheximide epimers, 13(α)-acetoxy-anhydroisoheximide (1) and 13(ß)-acetoxy-anhydroisoheximide (2), together with six known compounds (3-8), were obtained from the cultures of Streptomyces sp. YG7. The structures were elucidated based on a comprehensive spectroscopic data analysis including 1D and 2D NMR, as well as HRESIMS, and by comparison with the literature. The X-ray crystal analysis of 1 further confirmed the structure. All the compounds were tested for antifungal activity. Compounds 1, 2 and 5-8 showed moderate Canidia albicans inhibitory activity, while 5 and 6 presented moderate Pyricularia oryzae inhibitory activity. [Formula: see text].


Assuntos
Streptomyces , Antifúngicos/farmacologia , Ascomicetos , Cicloeximida , Estrutura Molecular
7.
Sci Rep ; 14(1): 18621, 2024 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127793

RESUMO

Star anise (Illicium verum), a valuable spice tree, faces significant threats from fungal diseases, particularly Alternaria leaf spot. This study investigates the potential of a soil-derived actinomycete strain, YG-5, as a biocontrol agent against Alternaria tenuissima, the causative pathogen on Alternaria leaf spot in star anise. Through comprehensive morphology, physiology, biochemistry, and genetic analyses, we identified the isolate as Streptomyces sp. YG-5. The strain exhibited broad-spectrum antimicrobial activity against several plant pathogens, with inhibition rates ranging between 36.47 to 80.34%. We systematically optimized the fermentation conditions for YG-5, including medium composition and cultivation parameters. The optimized process resulted in an 89.56% inhibition rate against A. tenuissima, a 14.72% improvement over non-optimized conditions. Notably, the antimicrobial compounds produced by YG-5 demonstrated stability across various temperatures, pH levels, and UV irradiation. In vivo efficacy trials showed promising results, with YG-5 fermentation broth reducing Alternaria leaf spot incidence on star anise leaves by 56.95%. These findings suggest that Streptomyces sp. YG-5 holds significant potential as a biocontrol agent against Alternaria leaf spot in star anise cultivation, offering a sustainable approach to disease management in this valuable crop.


Assuntos
Alternaria , Fermentação , Doenças das Plantas , Streptomyces , Alternaria/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Streptomyces/fisiologia , Folhas de Planta/microbiologia , Agentes de Controle Biológico , Actinobacteria/genética
8.
Sci Rep ; 14(1): 12418, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816453

RESUMO

Body core temperature (Tc) monitoring is crucial for minimizing heat injury risk. However, validated strategies are invasive and expensive. Although promising, aural canal temperature (Tac) is susceptible to environmental influences. This study investigated whether incorporation of external auricle temperature (Tea) into an ear-based Tc algorithm enhances its accuracy during multiple heat stress conditions. Twenty males (mean ± SD; age = 25 ± 3 years, BMI = 21.7 ± 1.8, body fat = 12 ± 3%, maximal aerobic capacity (VO2max) = 64 ± 7 ml/kg/min) donned an ear-based wearable and performed a passive heating (PAH), running (RUN) and brisk walking trial (WALK). PAH comprised of immersion in hot water (42.0 ± 0.3 °C). RUN (70 ± 3%VO2max) and WALK (50 ± 10%VO2max) were conducted in an environmental chamber (Tdb = 30.0 ± 0.2 °C, RH = 71 ± 2%). Several Tc models, developed using Tac, Tea and heart rate, were validated against gastrointestinal temperature. Inclusion of Tea as a model input improved the accuracy of the ear-based Tc algorithm. Our best performing model (Trf3) displayed good group prediction errors (mean bias error = - 0.02 ± 0.26 °C) but exhibited individual prediction errors (percentage target attainment ± 0.40 °C = 88%) that marginally exceeded our validity criterion. Therefore, Trf3 demonstrates potential utility for group-based Tc monitoring, with additional refinement needed to extend its applicability to personalized heat strain monitoring.


Assuntos
Temperatura Corporal , Pavilhão Auricular , Temperatura Alta , Dispositivos Eletrônicos Vestíveis , Humanos , Masculino , Adulto , Temperatura Corporal/fisiologia , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Pavilhão Auricular/fisiologia , Adulto Jovem , Frequência Cardíaca/fisiologia , Algoritmos
9.
J Fungi (Basel) ; 9(11)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37998887

RESUMO

The insect pathogenic fungus, Ascosphaera apis, is the causative agent of honeybee chalk brood disease. Amylases are secreted by many plant pathogenic fungi to access host nutrients through the metabolism of starch, and the identification of new amylases can have important biotechnological applications. Production of amylase by A. apis in submerged culture was optimized using the response surface method (RSM). Media composition was modeled using Box-Behnken design (BBD) at three levels of three variables, and the model was experimentally validated to predict amylase activity (R2 = 0.9528). Amylase activity was highest (45.28 ± 1.16 U/mL, mean ± SE) in media composed of 46 g/L maltose and1.51 g/L CaCl2 at a pH of 6.6, where total activity was ~11-fold greater as compared to standard basal media. The enzyme was purified to homogeneity with a 2.5% yield and 14-fold purification. The purified enzyme had a molecular weight of 75 kDa and was thermostable and active in a broad pH range (> 80% activity at a pH range of 7-10), with optimal activity at 55 °C and pH = 7.5. Kinetic analyses revealed a Km of 6.22 mmol/L and a Vmax of 4.21 µmol/mL·min using soluble starch as the substrate. Activity was significantly stimulated by Fe2+ and completely inhibited by Cu2+, Mn2+, and Ba2+ (10 mM). Ethanol and chloroform (10% v/v) also caused significant levels of inhibition. The purified amylase essentially exhibited activity only on hydrolyzed soluble starch, producing mainly glucose and maltose, indicating that it is an endo-amylase (α-amylase). Amylase activity peaked at 99.38 U/mL fermented in a 3.7 L-bioreactor (2.15-fold greater than what was observed in flask cultures). These data provide a strategy for optimizing the production of enzymes from fungi and provide insight into the α-amylase of A. apis.

10.
J Fungi (Basel) ; 9(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132776

RESUMO

Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1-6) and three hopane triterpenes (7-9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts for the first time. All compounds were tested for various in vitro bioactivities. Six compounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54-26.06 µM. Antimicrobial activity bioassays revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 µg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 µg/mL. Compounds 4, 5, and 9 also displayed free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2-), with IC50 values of compounds 2, 4, and 6 ~3.45-14.04 µg/mL and 22.87-53.31 µg/mL towards DPPH and O2-, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids from this group of fungal insect symbionts and plant pathogens.

11.
Light Sci Appl ; 11(1): 288, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202804

RESUMO

Photonic neural network has been sought as an alternative solution to surpass the efficiency and speed bottlenecks of electronic neural network. Despite that the integrated Mach-Zehnder Interferometer (MZI) mesh can perform vector-matrix multiplication in photonic neural network, a programmable in-situ nonlinear activation function has not been proposed to date, suppressing further advancement of photonic neural network. Here, we demonstrate an efficient in-situ nonlinear accelerator comprising a unique solution-processed two-dimensional (2D) MoS2 Opto-Resistive RAM Switch (ORS), which exhibits tunable nonlinear resistance switching that allow us to introduce nonlinearity to the photonic neuron which overcomes the linear voltage-power relationship of typical photonic components. Our reconfigurable scheme enables implementation of a wide variety of nonlinear responses. Furthermore, we confirm its feasibility and capability for MNIST handwritten digit recognition, achieving a high accuracy of 91.6%. Our accelerator constitutes a major step towards the realization of in-situ photonic neural network and pave the way for the integration of photonic integrated circuits (PIC).

12.
ACS Nano ; 16(9): 14308-14322, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36103401

RESUMO

Memtransistors that combine the properties of transistor and memristor hold significant promise for in-memory computing. While superior data storage capability is achieved in memtransistors through gate voltage-induced conductance modulation, the lateral device configuration would not only result in high write bias, which compromises the power efficiency, but also suffers from unsuccessful memory reset that leads to reliability concerns. To circumvent such performance limitations, an advanced physics-based model is required to uncover the dynamic resistive switching behavior and deduce the key driving parameters for the switching process. This work demonstrates a self-consistent physics-based model which incorporates the often-overlooked effects of lattice temperature, vacancy dynamics, and channel electrostatics to accurately solve the interaction between gate potential, ions, and carriers on the memristive switching mechanism. The completed model is carefully calibrated with an ambipolar WSe2 memtransistor and hence enables the investigation of the carrier polarity effect (electrons vs holes) on vacancy transport. Nevertheless, the validity of the model can be extended to different materials by a simple material-dependent parameter modification. Building upon the existing understanding of Schottky barrier height modulation, our study reveals three key insights─leveraging threshold voltage shifts to lower write bias; optimizing lattice temperature distribution and read bias polarity to achieve successful memory state recovery; engineering contact work function to overcome the detrimental parasitic current flow in short channel ambipolar memtransistors. Therefore, understanding the significant correlation between the switching mechanisms, different material systems, and device structures allows performance optimization of operating modes and device designs for future memtransistors-based computing systems.

13.
J Wildl Dis ; 58(2): 450-453, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35113986

RESUMO

Batrachochytrium dendrobatidis (Bd), which causes chytridiomycosis, mainly infects Anura and Caudata but is poorly known in Gymnophiona. We conducted a survey of Bd in the Yunnan caecilian (Ichthyophis bannanicus) and found that 6 of 71 samples (8.4%) tested positive for Bd. To our knowledge, this is the first detection of Bd in wild I. bannanicus.


Assuntos
Quitridiomicetos , Micoses , Animais , Anuros/microbiologia , Batrachochytrium , China/epidemiologia , Micoses/epidemiologia , Micoses/microbiologia , Micoses/veterinária
14.
ACS Sens ; 6(11): 4156-4166, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34726380

RESUMO

As 5G communication technology allows for speedier access to extended information and knowledge, a more sophisticated human-machine interface beyond touchscreens and keyboards is necessary to improve the communication bandwidth and overcome the interfacing barrier. However, the full extent of human interaction beyond operation dexterity, spatial awareness, sensory feedback, and collaborative capability to be replicated completely remains a challenge. Here, we demonstrate a hybrid-flexible wearable system, consisting of simple bimodal capacitive sensors and a customized low power interface circuit integrated with machine learning algorithms, to accurately recognize complex gestures. The 16 channel sensor array extracts spatial and temporal information of the finger movement (deformation) and hand location (proximity) simultaneously. Using machine learning, over 99 and 91% accuracy are achieved for user-independent static and dynamic gesture recognition, respectively. Our approach proves that an extremely simple bimodal sensing platform that identifies local interactions and perceives spatial context concurrently, is crucial in the field of sign communication, remote robotics, and smart manufacturing.


Assuntos
Gestos , Dispositivos Eletrônicos Vestíveis , Algoritmos , Humanos , Aprendizado de Máquina , Movimento
15.
Materials (Basel) ; 12(9)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31064101

RESUMO

We report on the dual mechanical and proximity sensing effect of soft-matter interdigitated (IDE) capacitor sensors, together with its modelling using finite element (FE) simulation to elucidate the sensing mechanism. The IDE capacitor is based on liquid-phase GaInSn alloy (Galinstan) embedded in a polydimethylsiloxane (PDMS) microfludics channel. The use of liquid-metal as a material for soft sensors allows theoretically infinite deformation without breaking electrical connections. The capacitance sensing is a result of E-field line disturbances from electrode deformation (mechanical effect), as well as floating electrodes in the form of human skin (proximity effect). Using the proximity effect, we show that spatial detection as large as 28 cm can be achieved. As a demonstration of a hybrid electronic system, we show that by integrating the IDE capacitors with a capacitance sensing chip, respiration rate due to a human's chest motion can be captured, showing potential in its implementation for wearable health-monitoring.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa