RESUMO
CRISPR screens have empowered the high-throughput dissection of gene functions; however, more explicit genetic elements, such as codons of amino acids, require thorough interrogation. Here, we establish a CRISPR strategy for unbiasedly probing functional amino acid residues at the genome scale. By coupling adenine base editors and barcoded sgRNAs, we target 215,689 out of 611,267 (35%) lysine codons, involving 85% of the total protein-coding genes. We identify 1,572 lysine codons whose mutations perturb human cell fitness, with many of them implicated in cancer. These codons are then mirrored to gene knockout screen data to provide functional insights into the role of lysine residues in cellular fitness. Mining these data, we uncover a CUL3-centric regulatory network in which lysine residues of CUL3 CRL complex proteins control cell fitness by specifying protein-protein interactions. Our study offers a general strategy for interrogating genetic elements and provides functional insights into the human proteome.
Assuntos
Lisina , Proteoma , Humanos , Proteoma/genética , Lisina/genética , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas , CódonRESUMO
Oxidative stress response is a fundamental biological process mediated by conserved mechanisms. The identities and functions of some key regulators remain unknown. Here, we report a novel role of C. elegans casein kinase 1 gamma CSNK-1 (also known as CK1γ or CSNK1G) in regulating oxidative stress response and ROS levels. csnk-1 interacted with the bli-3/tsp-15/doxa-1 NADPH dual oxidase genes via genetic nonallelic noncomplementation to affect C. elegans survival in oxidative stress. The genetic interaction was supported by specific biochemical interactions between DOXA-1 and CSNK-1 and potentially between their human orthologs DUOXA2 and CSNK1G2. Consistently, CSNK-1 was required for normal ROS levels in C. elegans. CSNK1G2 and DUOXA2 each can promote ROS levels in human cells, effects that were suppressed by a small molecule casein kinase 1 inhibitor. We also detected genetic interactions between csnk-1 and skn-1 Nrf2 in oxidative stress response. Together, we propose that CSNK-1 CSNK1G defines a novel conserved regulatory mechanism for ROS homeostasis.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Oxidases Duais/farmacologia , NADP , Espécies Reativas de Oxigênio , Caseína Quinase I/genética , Estresse Oxidativo/genética , NADPH Oxidases , Tetraspaninas/genéticaRESUMO
The lymphocyte-specific protein tyrosine kinase (LCK) plays a crucial role in both T-cell development and activation. Dysregulation of LCK signaling has been demonstrated to drive the oncogenesis of T-cell acute lymphoblastic leukemia (T-ALL), thus providing a therapeutic target for leukemia treatment. In this study, we introduced a sophisticated virtual screening strategy combined with biological evaluations to discover potent LCK inhibitors. Our initial approach involved utilizing the PLANET algorithm to assess and contrast various scoring methodologies suitable for LCK inhibitor screening. After effectively evaluating PLANET, we progressed to devise a virtual screening workflow that synergistically combines the strengths of PLANET with the capabilities of Schrödinger's suite. This integrative strategy led to the efficient identification of four potential LCK inhibitors. Among them, compound 1232030-35-1 stood out as the most promising candidate with an IC50 of 0.43 nM. Further in vitro bioassays revealed that 1232030-35-1 exhibited robust antiproliferative effects on T-ALL cells, which was attributed to its ability to suppress the phosphorylations of key molecules in the LCK signaling pathway. More importantly, 1232030-35-1 treatment demonstrated profound in vivo antileukemia efficacy in a human T-ALL xenograft model. In addition, complementary molecular dynamics simulations provided deeper insight into the binding kinetics between 1232030-35-1 and LCK, highlighting the formation of a hydrogen bond with Met319. Collectively, our study established a robust and effective screening strategy that integrates AI-driven and conventional methodologies for the identification of LCK inhibitors, positioning 1232030-35-1 as a highly promising and novel drug-like candidate for potential applications in treating T-ALL.
Assuntos
Aprendizado Profundo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/antagonistas & inibidores , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Animais , Descoberta de Drogas , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , CamundongosRESUMO
BACKGROUND: Cerebral ischemia/reperfusion injury (CIRI) is still a complicated disease with high fatality rates worldwide. Transmembrane Protein 79 (TMEM79) regulates inflammation and oxidative stress in some other diseases. METHODS: CIRI mouse model was established using C57BL/6J mice through middle cerebral artery occlusion-reperfusion (MCAO/R), and BV2 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) to simulate CIRI. Brain tissue or BV2 cells were transfected or injected with lentivirus-carried TMEM79 overexpression vector. The impact of TMEM79 on CIRI-triggered oxidative stress was ascertained by dihydroethidium (DHE) staining and examination of oxidative stress indicators. Regulation of TMEM79 in neuronal apoptosis and inflammation was determined using TUNEL staining and ELISA. RESULTS: TMEM79 overexpression mitigated neurological deficit induced by MCAO/R and decreased the extent of cerebral infarct. TMEM79 prevented neuronal death in brain tissue of MCAO/R mouse model and suppressed inflammatory response by reducing inflammatory cytokines levels. Moreover, TMEM79 significantly attenuated inflammation and oxidative stress caused by OGD/R in BV2 cells. TMEM79 facilitated the activation of Nrf2 and inhibited NLRP3 and caspase-1 expressions. Rescue experiments indicated that the Nrf2/NLRP3 signaling pathway mediated the mitigative effect of TMEM79 on CIRI in vivo and in vitro. CONCLUSION: Overall, TMEM79 was confirmed to attenuate CIRI via regulating the Nrf2/NLRP3 signaling pathway.
Assuntos
Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Proteínas de Membrana , Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Traumatismo por Reperfusão , Animais , Humanos , Masculino , Camundongos , Apoptose , Isquemia Encefálica/metabolismo , Linhagem Celular , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Traumatismo por Reperfusão/metabolismo , Transdução de SinaisRESUMO
Cardiopulmonary progenitor cells (CPPs) constitute a minor subpopulation of cells that are commonly associated with heart and lung morphogenesis during embryonic development but completely subside after birth. This fact offers the possibility for the treatment of pulmonary heart disease (PHD), in which the lung and heart are both damaged. A reliable source of CPPs is urgently needed. In this study, we reprogrammed human cardiac fibroblasts (HCFs) into CPP-like cells (or induced CPPs, iCPPs) and evaluated the therapeutic potential of iCPP-derived exosomes for acute lung injury (ALI). iCPPs were created in passage 3 primary HCFs by overexpressing GLI1, WNT2, ISL1 and TBX5 (GWIT). Exosomes were isolated from the culture medium of passage 6-8 GWIT-iCPPs. A mouse ALI model was established by intratracheal instillation of LPS. Four hours after LPS instillation, ALI mice were treated with GWIT-iCPP-derived exosomes (5 × 109, 5 × 1010 particles/mL) via intratracheal instillation. We showed that GWIT-iCPPs could differentiate into cell lineages, such as cardiomyocyte-like cells, endothelial cells, smooth muscle cells and alveolar epithelial cells, in vitro. Transcription analysis revealed that GWIT-iCPPs have potential for heart and lung development. Intratracheal instillation of iCPP-derived exosomes dose-dependently alleviated LPS-induced ALI in mice by attenuating lung inflammation, promoting endothelial function and restoring capillary endothelial cells and the epithelial cells barrier. This study provides a potential new method for the prevention and treatment of cardiopulmonary injury, especially lung injury, and provides a new cell model for drug screening.
Assuntos
Lesão Pulmonar Aguda , Exossomos , Células-Tronco , Animais , Exossomos/metabolismo , Exossomos/transplante , Lesão Pulmonar Aguda/terapia , Humanos , Camundongos , Células-Tronco/citologia , Células-Tronco/metabolismo , Fibroblastos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Diferenciação Celular , Células Cultivadas , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Modelos Animais de DoençasRESUMO
Increasing evidence shows that promoters and enhancers could be related to 3D chromatin structure, thus affecting cellular functions. Except for their roles in forming canonical chromatin loops, promoters and enhancers have not been well studied regarding the maintenance of broad chromatin organization. Here, we focused on the active promoters/enhancers predicted to form many 3D contacts with other active promoters/enhancers (referred to as hotspots) and identified dozens of loci essential for cell growth and survival through CRISPR screening. We found that the deletion of an essential hotspot could lead to changes in broad chromatin organization and the expression of distal genes. We showed that the essentiality of hotspots does not result from their association with individual genes that are essential for cell viability but rather from their association with multiple dysregulated non-essential genes to synergistically impact cell fitness.
Assuntos
Cromatina , Elementos Facilitadores Genéticos , Sobrevivência Celular/genética , Cromatina/genética , Regiões Promotoras GenéticasRESUMO
OBJECTIVES: We genetically modified dedifferentiated chondrocytes (DCs) using lentiviral vectors and adenoviral vectors encoding TGF-ß3 (referred to as transgenic groups below) and encapsulated these DCs in the microcavitary hydrogel and investigated the combinational effect on redifferentiation of the genetically manipulated DCs. RESULTS: The Cell Counting Kit-8 data indicated that both transgenic groups exhibited significantly higher cell viability in the first week but inferior cell viability in the subsequent timepoints compared with those of the control group. Real-time polymerase chain reaction and western blot analysis results demonstrated that both transgenic groups had a better effect on redifferentiation to some extent, as evidenced by higher expression levels of chondrogenic genes, suggesting the validity of combination with transgenic DCs and the microcavitary hydrogel on redifferentiation. Although transgenic DCs with adenoviral vectors presented a superior extent of redifferentiation, they also expressed greater levels of the hypertrophic gene type X collagen. It is still worth further exploring how to deliver TGF-ß3 more efficiently and optimizing the appropriate parameters, including concentration and duration. CONCLUSIONS: The results demonstrated the better redifferentiation effect of DCs with the combinational use of transgenic TGF-ß3 and a microcavitary alginate hydrogel and implied that DCs would be alternative seed cells for cartilage tissue engineering due to their easily achieved sufficient cell amounts through multiple passages and great potential to redifferentiate to produce cartilaginous extracellular matrix.
Assuntos
Diferenciação Celular , Condrócitos , Fator de Crescimento Transformador beta3 , Condrócitos/citologia , Condrócitos/metabolismo , Fator de Crescimento Transformador beta3/genética , Fator de Crescimento Transformador beta3/farmacologia , Vetores Genéticos/genética , Hidrogéis/química , Animais , Sobrevivência Celular , Células Cultivadas , Adenoviridae/genética , Lentivirus/genética , Desdiferenciação Celular/genética , Engenharia Tecidual/métodosRESUMO
In recent years, dibenzyl disulfide (DBDS) in transformer oils has caused many transformer failures around the world, and its removal has attracted more attention. In this work, nine imidazolium-based ionic liquids (ILs) were applied as effective, green desulfurization extractants for DBDS-containing transformer oil for the first time. The results show that the desulfurization ability of the ILs for DBDS followed the order of [BMIM]FeCl4 > [BMIM]N(CN)2 > [BMIM]SCN > [BMIM](C4H9O)2PO2 > [BMIM]MeSO4 > [BMIM]NTf2 > [BMIM]OTf > [BMIM]PF6 > [BMIM]BF4. Especially, [BMIM]FeCl4 ionic liquid had excellent removal efficiency for DBDS, with its S partition coefficient KN (S) being up to 2642, which was much higher than the other eight imidazolium-based ILs. Moreover, the extractive performance of [BMIM]FeCl4 increased with an increasing molar ratio of FeCl3 to [BMIM]Cl, which was attributed to its Lewis acidity and fluidity. [BMIM]FeCl4 ionic liquid could also avail in the desulfurization of diphenyl sulfide (DPS) from model oils. The experimental results demonstrate that π-π action, π-complexation, and Lewis acid-base interaction played important roles in the desulfurization process. Finally, the ([BMIM]FeCl4) ionic liquid could be recycled five times without a significant decrease in extractive ability.
RESUMO
Oridonin (Ori) is a naturally existing diterpenoid substance that mainly exists in the Chinese medicinal plant Rabdosia rubescens. It was previously found to possess intriguing biological properties; however, the quick clearance from plasma and limited solubility in water restricts its use as a drug. Several metal-organic frameworks (MOFs), having big surfaces and large pores, have recently been considered promising drug transporters. The zeolitic imidazolate framework-8 (ZIF-8), a form of MOF consisting of 2-methylimidazole with zinc ions, is structurally stable under physiologically neutral conditions, while it can degrade at low pH values such as in tumor cells. Herein, a nanosized drug delivery system, Ori@ZIF-8, was successfully designed for encapsulating and transporting oridonin to the tumor site. The drug loading of the prepared Ori@ZIF-8 was 26.78%, and the particles' mean size was 240.5 nm. In vitro, the release of Ori@ZIF-8 exhibited acid sensitivity, with a slow release under neutral conditions and rapid release of the drug under weakly acidic conditions. According to the in vitro anti-tumor experiments, Ori@ZIF-8 produced higher cytotoxicity than free Ori and induced apoptosis in A549 cancer cells. In conclusion, Ori@ZIF-8 could be a potential pH-responsive carrier to accurately release more oridonins at the tumor site.
Assuntos
Diterpenos do Tipo Caurano , Estruturas Metalorgânicas , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/farmacologia , Estruturas Metalorgânicas/química , Humanos , Concentração de Íons de Hidrogênio , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Células A549 , Linhagem Celular Tumoral , Zeolitas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , ImidazóisRESUMO
The identification of cysteine enantiomers is of great significance in the biopharmaceutical industry and medical diagnostics. Herein, we develop an electrochemical sensor to discriminate cysteine (Cys) enantiomers based on the integration of a copper metal-organic framework (Cu-MOF) with an ionic liquid. Because the combine energy of D-cysteine (D-Cys) with Cu-MOF (-9.905 eV) is lower than that of L-cysteine (L-Cys) with Cu-MOF (-9.694 eV), the decrease in the peak current of the Cu-MOF/GCE induced by D-Cys is slightly higher than that induced by L-Cys in the absence of an ionic liquid. In contrast, the combine energy of L-Cys with an ionic liquid (-1.084 eV) is lower than that of D-Cys with an ionic liquid (-1.052 eV), and the ionic liquid is easier to cross-link with L-Cys than with D-Cys. When an ionic liquid is present, the decrease in the peak current of the Cu-MOF/GCE induced by D-Cys is much higher than that induced by L-Cys. Consequently, this electrochemical sensor can efficiently discriminate D-Cys from L-Cys, and it can sensitively detect D-Cys with a detection limit of 0.38 nM. Moreover, this electrochemical sensor exhibits good selectivity, and it can accurately measure the spiked D-Cys in human serum with a recovery ratio of 100.2-102.6%, with wide applications in biomedical research and drug discovery.
Assuntos
Líquidos Iônicos , Estruturas Metalorgânicas , Humanos , Cisteína , Cobre , Estereoisomerismo , Técnicas Eletroquímicas , Limite de DetecçãoRESUMO
BACKGROUND: Postoperative delirium (POD) is the most common postoperative complication in elderly patients, especially in older aged patients (aged 75 years or over). The development of electroencephalography analysis could provide indicators for early detection, intervention, and evaluation. If there are pathophysiological changes in the brain, the BIS value will also change accordingly. In this study, we investigated the predictive value of the preoperative bispectral (BIS) index in POD for patients aged over 75 years. METHODS: In this prospective study, patients (≥ 75 years) undergoing elective non-neurosurgery and non-cardiac surgery under general anesthesia were included (n = 308). Informed consent was obtained from all involved patients. Before the operation and during the first 5 postoperative days, delirium was assessed with the confusion assessment method by trained researchers twice every day. Thereafter, the preoperative bedside BIS of each patient was dynamically acquired by the BIS VISTA monitoring system and the BIS monitoring of electrodes. A series of evaluation scales were assessed before and after surgery. A preoperative predictive score was generated according to the results of multivariable logistic regression. The receiver operating characteristic curves were drawn and the area under the curves was estimated to evaluate the perioperative diagnostic values of BIS and preoperative predictive score for POD. The specificity, sensitivity, positive predictive value (PPV), and negative predictive (NPV) value were calculated. RESULTS: Delirium occurred in 50 of 308 (16.2%) patients. The median BIS of delirious patients was 86.7 (interquartile range [IQR] 80.0-94.0), lower than that of the non-delirious 91.9 (IQR 89.7-95.4, P < 0.001). According to the ROC curve of the BIS index, the optimal cut-off value was 84, with a sensitivity of 48%, specificity of 87%, PPV 43%, NPV 89% for forecasting POD and the area under curves was 0.67. While integrating BIS, mini-mental state examination, anemia, activities of daily living, and blood urea nitrogen, the model had a sensitivity of 78%, specificity of 74%, PPV of 0.37%, and NPV of 95% for forecasting POD, and the area under curves was 0.83. CONCLUSIONS: Preoperative bedside BIS in delirium patients was lower than that in non-delirium patients when undergoing non-neurosurgery and non-cardiac surgery in patients aged over 75. The model of integrating BIS, mini-mental state examination, anemia, activities of daily living, and blood urea nitrogen is a promising tool for predicting postoperative delirium in patients aged over 75.
Assuntos
Delírio do Despertar , Idoso , Humanos , Pessoa de Meia-Idade , Delírio do Despertar/diagnóstico , Estudos de Coortes , Estudos Prospectivos , Atividades Cotidianas , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Fatores de RiscoRESUMO
Staphylococcus aureus is a major human pathogen, which has multiple drug resistance and can cause serious infections. Recent studies have shown that berberine has antibacterial activity and it can affect biofilm formation of S. aureus. However, the berberine effect on the biofilm of S. aureus is controversial. In this study, we investigate the effect of berberine on the biofilm development in S. aureus NCTC8325 and explore the possible mechanism. Susceptibility test shows that berberine inhibits growth of methicillin-sensitive S. aureus (MSSA), methicillin-resistant S. aureus (MRSA) and vancomycin-intermediate S. aureus (VISA) at different concentrations. S. aureus NCTC8325 is chosen as a model strain to explore further the berberine effect. The MIC of berberine for S. aureus NCTC8325 is 256 µg ml-1. Berberine below 32 µg ml-1 inhibits the dispersal of biofilm and stimulates clumping of cells of NCTC8325 in a concentration-dependent manner, while not showing obvious inhibition on the bacterial growth. The transcription of the key negative regulator of biofilm dispersal AgrA is decreased and an agrA mutant forms biofilm reaching to a similar level of biomass to WT in the presence of berberine at 32 µg ml-1. Transcription of some genes involving synthesis of biofilm structure components, including polysaccharide intracellular adhesin (PIA), proteins and eDNA were also up-regulated, especially icaA for PIA synthesis. And consistently, PIA content was increased in cells exposed to berberine at 32 µg ml-1. This study reveals the dependence of berberine inhibition of biofilm dispersal on the Agr system, which is the first report exploring the molecule mechanism of the berberine effect on the biofilm of S. aureus.
Assuntos
Berberina , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Berberina/farmacologia , Biofilmes , Humanos , Meticilina/farmacologia , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia , Staphylococcus aureusRESUMO
The aim of this study was to investigate the potential application of computer-aided analysis in the quantitative assessment of changes in skeletal muscle injury in the rabbit contusion model. Forty healthy rabbits were randomly divided into control (n = 5) and contusion (n = 35) groups. Rabbits in the contusion group were used to construct a muscle contusion model induced by a hammer hitting the right gastrocnemius, while the muscles of rabbits in the control group were non-injured. Two-dimensional ultrasound (2D US) and contrast-enhanced ultrasonography (CEUS) were performed on the rabbits that had received skeletal muscle contusion injury at 1 h, and 1, 3, 7, 14, 21 and 28 days after injury. Afterwards, a multiscale blob feature (MBF) method was used to extract the textural features from the 2D US, and the muscle injuries were quantitatively evaluated. The eight textural parameters of skeletal muscle analysed by MBF at 1 h, and 1, 3 and 7 days post-injury were found to be significantly higher in the contusion group than in the control group (p < .05). On Day 14, the textural parameters (e.g., greyscale mean [Mean], greyscale standard deviation [SDev], number of blobs, average size of blobs, homogeneity of distribution, periodicity of distribution [POD] and irregularity) were also evidently higher in the contusion group than in the control group (p < .05). On Day 28, Mean, SDev and POD in the contusion group were markedly higher (p < .05). After that, the microcirculation in the injured areas increased from Day 7 to Day 21 after injury, but decreased on Day 28 after injury. Thus the quantitative assessment of changes in skeletal muscle injury (SMI) using computer-aided analysis allowed us to describe the geometric features of injured muscle fibres and the microperfusion changes estimated by the modified semi-quantitative scoring system. This provides a scientific basis for the development of a novel approach for the evaluation of SMI and rehabilitation process.
Assuntos
Contusões , Animais , Computadores , Contusões/diagnóstico por imagem , Microcirculação , Músculo Esquelético/diagnóstico por imagem , Coelhos , Ultrassonografia/métodosRESUMO
Amyloid-ß (Aß) accumulation in the brain is a pivotal event in the pathogenesis of Alzheimer's disease (AD), and its clearance from the brain is impaired in sporadic AD. Previous studies suggest that approximately half of the Aß produced in the brain is cleared by transport into the periphery. However, the mechanism and pathophysiological significance of peripheral Aß clearance remain largely unknown. The kidney is thought to be responsible for Aß clearance, but direct evidence is lacking. In this study, we investigated the impact of unilateral nephrectomy on the dynamic changes in Aß in the blood and brain in both humans and animals and on behavioural deficits and AD pathologies in animals. Furthermore, the therapeutic effects of the diuretic furosemide on Aß clearance via the kidney were assessed. We detected Aß in the kidneys and urine of both humans and animals and found that the Aß level in the blood of the renal artery was higher than that in the blood of the renal vein. Unilateral nephrectomy increased brain Aß deposition; aggravated AD pathologies, including Tau hyperphosphorylation, glial activation, neuroinflammation, and neuronal loss; and aggravated cognitive deficits in APP/PS1 mice. In addition, chronic furosemide treatment reduced blood and brain Aß levels and attenuated AD pathologies and cognitive deficits in APP/PS1 mice. Our findings demonstrate that the kidney physiologically clears Aß from the blood, suggesting that facilitation of Aß clearance via the kidney represents a novel potential therapeutic approach for AD.
Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Rim/metabolismo , Camundongos , Camundongos Transgênicos , Presenilina-1/metabolismoRESUMO
Rust is a common disease in wheat that significantly impacts its growth and yield. Stem rust and leaf rust of wheat are difficult to distinguish, and manual detection is time-consuming. With the aim of improving this situation, this study proposes a method for identifying wheat rust based on ensemble learning (WR-EL). The WR-EL method extracts and integrates multiple convolutional neural network (CNN) models, namely VGG, ResNet 101, ResNet 152, DenseNet 169, and DenseNet 201, based on bagging, snapshot ensembling, and the stochastic gradient descent with warm restarts (SGDR) algorithm. The identification results of the WR-EL method were compared to those of five individual CNN models. The results show that the identification accuracy increases by 32%, 19%, 15%, 11%, and 8%. Additionally, we proposed the SGDR-S algorithm, which improved the f1 scores of healthy wheat, stem rust wheat and leaf rust wheat by 2%, 3% and 2% compared to the SGDR algorithm, respectively. This method can more accurately identify wheat rust disease and can be implemented as a timely prevention and control measure, which can not only prevent economic losses caused by the disease, but also improve the yield and quality of wheat.
Assuntos
Basidiomycota , Triticum , Aprendizado de Máquina , Doenças das PlantasRESUMO
Optogenetics is emerging as an ideal method for controlling cellular activity. It overcomes some notable shortcomings of conventional methods in the elucidation of neural circuits, promotion of neuroregeneration, prevention of cell death and treatment of neurological disorders, although it is not without its own limitations. In this review, we narratively review the latest research on the improvement and existing challenges of optogenetics, with a particular focus on the field of brain injury, aiming at advancing optogenetics in the study of brain injury and collating the issues that remain. Finally, we review the most current examples of research, applying photostimulation in clinical treatment, and we explore the future prospects of these technologies.
Assuntos
Lesões Encefálicas , Doenças do Sistema Nervoso , Encéfalo/fisiologia , Lesões Encefálicas/terapia , Humanos , Optogenética/métodosRESUMO
Yellow rust is a disease with a wide range that causes great damage to wheat. The traditional method of manually identifying wheat yellow rust is very inefficient. To improve this situation, this study proposed a deep-learning-based method for identifying wheat yellow rust from unmanned aerial vehicle (UAV) images. The method was based on the pyramid scene parsing network (PSPNet) semantic segmentation model to classify healthy wheat, yellow rust wheat, and bare soil in small-scale UAV images, and to investigate the spatial generalization of the model. In addition, it was proposed to use the high-accuracy classification results of traditional algorithms as weak samples for wheat yellow rust identification. The recognition accuracy of the PSPNet model in this study reached 98%. On this basis, this study used the trained semantic segmentation model to recognize another wheat field. The results showed that the method had certain generalization ability, and its accuracy reached 98%. In addition, the high-accuracy classification result of a support vector machine was used as a weak label by weak supervision, which better solved the labeling problem of large-size images, and the final recognition accuracy reached 94%. Therefore, the present study method facilitated timely control measures to reduce economic losses.
Assuntos
Basidiomycota , Aprendizado Profundo , Doenças das Plantas , Máquina de Vetores de Suporte , TriticumRESUMO
Cerebral ischemia-reperfusion (CIR) can regulate multiple transcription factors to enhance or attenuate injury. Nucleotide-binding oligomerization domain protein 1 (NOD1) has been reported to be involved in autophagy and endoplasmic reticulum (ER) stress. Moreover, autophagy and ER stress play important roles in CIR injury. Hence, the function of NOD1 in CIR injury was explored in this study. Primary rat cortical neurons were treated with oxygen-glucose deprivation and reperfusion (OGD/R) in vitro. NOD1 level was measured using immunofluorescence, real-time quantitative PCR and western blotting and its ubiquitination using co-immunoprecipitation. Results showed that OGD/R up-regulated NOD1 level but inhibited NOD1 ubiquitination. Then the effect of NOD1 on OGD/R-induced changes in cell viability, apoptosis, autophagy and ER stress was evaluated by methyl thiazolyl tetrazolium assay, lactate dehydrogenase release, Hoechst staining, detection of autophagy and ER stress-related proteins using western blotting and infection with GFP-LC3 lentiviruses. OGD/R decreased cell viability and increased cell apoptosis. NOD1 up-regulation promoted these changes, but NOD1 down-regulation reversed these changes. Moreover, OGD/R triggered autophagy and ER stress and NOD1 silencing reversed OGD/R-induced changes in autophagy and ER stress. To validate the role of autophagy in OGD/R injury, autophagy inducer rapamycin was used. Rapamycin promoted OGD/R-induced decrease in cell viability and counteracted NOD1 silencing-induced increase in cell viability. In addition, ER stress inducer tunicamycin was used to investigate the relationship between ER stress and autophagy. Tunicamycin promoted OGD/R-induced decrease in cell viability and reversed NOD1 silencing-induced increase in cell viability. Tunicamycin also enhanced OGD/R-induced autophagy and reversed NOD1 silencing-induced inhibition in autophagy. The results indicated that NOD1 promoted OGD/R injury in cortical neurons through activating ER stress-mediated autophagy. This study provides new insights for the target of CIR injury treatment.
Assuntos
Isquemia Encefálica/genética , Estresse do Retículo Endoplasmático/genética , Proteína Adaptadora de Sinalização NOD1/genética , Traumatismo por Reperfusão/genética , Animais , Apoptose/genética , Autofagia/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Sobrevivência Celular/genética , Córtex Cerebelar/metabolismo , Córtex Cerebelar/patologia , Glucose/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Oxigênio/metabolismo , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologiaRESUMO
Dempster-Shafer theory has been widely used in many applications, especially in the measurement of information uncertainty. However, under the D-S theory, how to use the belief entropy to measure the uncertainty is still an open issue. In this paper, we list some significant properties. The main contribution of this paper is to propose a new entropy, for which some properties are discussed. Our new model has two components. The first is Nguyen entropy. The second component is the product of the cardinality of the frame of discernment (FOD) and Dubois entropy. In addition, under certain conditions, the new belief entropy can be transformed into Shannon entropy. Compared with the others, the new entropy considers the impact of FOD. Through some numerical examples and simulation, the proposed belief entropy is proven to be able to measure uncertainty accurately.
RESUMO
Invasion and subsequent metastasis are major characteristics of malignant human renal cell carcinoma (RCC), though the mechanisms remain elusive. Mitochondrial pyruvate carrier (MPC), a key factor that controls pyruvate transportation in mitochondria, is frequently dysregulated in tumor cells and loss of MPC predicts poor prognosis in various types of cancer. However, the clinical relevance and functional significance of MPC in RCC remain to be elucidated. In this study, we investigated the expression of MPC1 and MPC2 in specimens from RCC patients and observed downregulation of MPC1, but not MPC2, in RCC tissues compared with adjacent non-cancerous tissue. Moreover, RCC patients with higher MPC1 expression exhibited longer overall survival rate than those with lower MPC1. Functionally, MPC1 suppressed the invasion of RCC cells in vitro and reduced the growth of RCC cells in vivo, possibly through inhibition of MMP7 and MMP9. Further studies revealed that loss of MPC1 was induced by hypoxia in RCC cells, and notably, MPC1 expression, was negatively correlated with HIF1α expression in RCC cells and patient samples. Taken together, our results identify anti-tumor function of MPC1 in RCC and revealed MPC1 as a novel prognostic biomarker to predict better patient survival.