Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Angew Chem Int Ed Engl ; 63(5): e202315814, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38061995

RESUMO

Highly efficient perovskite solar cells typically rely on spiro-OMeTAD as a hole transporter, achieving a 25.7 % efficiency record. However, these cells are susceptible to harsh 85 °C conditions. Here, we present a peri-xanthenoxanthene-based semiconducting homopolymer (p-TNI2) with matched energy levels and a high molecular weight, synthesized nearly quantitatively through facile oxidative polymerization. Compared to established materials, p-TNI2 excels in hole mobility, morphology, modulus, and waterproofing. Implementing p-TNI2 as the hole transport layer results in n-i-p perovskite solar cells with an initial average efficiency of 24.6 %, rivaling 24.4 % for the spiro-OMeTAD control cells under identical conditions. Furthermore, the p-TNI2-based cells exhibit enhanced thermostability at 85 °C and operational robustness.

2.
Angew Chem Int Ed Engl ; 63(21): e202402176, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38470010

RESUMO

Electrosynthesis coupled hydrogen production (ESHP) mostly involves catalyst reconstruction in aqueous phase, but accurately identifying and controlling the process is still a challenge. Herein, we modulated the electronic structure and exposed unsaturated sites of metal-organic frameworks (MOFs) via ligand defect to promote the reconstruction of catalyst for azo electrosynthesis (ESA) coupled with hydrogen production overall reaction. The monolayer Ni-MOFs achieved 89.8 % Faraday efficiency and 90.8 % selectivity for the electrooxidation of 1-methyl-1H-pyrazol-3-amine (Pyr-NH2) to azo, and an 18.5-fold increase in H2 production compared to overall water splitting. Operando X-ray absorption fine spectroscopy (XAFS) and various in situ spectroscopy confirm that the ligand defect promotes the potential dependent dynamic reconstruction of Ni(OH)2 and NiOOH, and the reabsorption of ligand significantly lowers the energy barrier of rate-determining step (*Pyr-NH to *Pyr-N). This work provides theoretical guidance for modulation of electrocatalyst reconstruction to achieve highly selective ESHP.

3.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762074

RESUMO

The number of elderly dogs is increasing significantly worldwide, and many elderly dogs develop canine cognitive dysfunction syndrome (CCDS). CCDS is the canine analog of Alzheimer's disease (AD) in humans. It is very important to develop techniques for detecting CDDS in dogs. Thus, we used the detection of neurofilament light chains (NfL) in plasma as a blood-based biomarker for the early diagnosis of canine Alzheimer's disease using immunomagnetic reduction (IMR) technology by immobilizing NfL antibodies on magnetic nanoparticles. According to the 50-point CCDS rating scale, we divided 36 dogs into 15 with CCDS and 21 without the disease. The results of our IMR assay showed that the plasma NfL levels of dogs with CCDS were significantly increased compared to normal dogs (p < 0.01). By plasma biochemical analysis, we further confirmed that the liver and renal dysfunction biomarkers of dogs with CCDS were significantly elevated compared to normal dogs (p < 0.01-0.05). On the basis of our preliminary study, we propose that IMR technology could be an ideal biosensor for detecting plasma NfL for the early diagnosis of CCDS.

4.
Angew Chem Int Ed Engl ; 62(11): e202216347, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36642694

RESUMO

Different from the previous study that biomass derivatives replace water oxidation for enhancing hydrogen production, we found that mild oxidation was more conductive to cathodic hydrogen production. In this study, maximum Faradaic efficiency (>99 %) and lower energy consumption for hydrogen production was achieved by precisely controlling the two-electron mild electrochemical oxidation of tetrahydroisoquinolines (THIQs) to dihydroisoquinolines (DHIQs) in place of the four-electron deep oxidation to isoquinolines (IQs). Moreover, the high value-added DHIQs were prepared from THIQs with high selectivity (>99 %) at the low potential of 1.36 V. Operando electrochemical Raman and density functional theory proved that the high selectivity was attributed to the regulable active species of NiOOH induced by the interaction of Co and Fe for preferentially breaking C-H bond rather than N-H of THIQs. This novel method provides important insight into efficient biomass-assisted hydrogen production.

5.
Phys Chem Chem Phys ; 21(10): 5705-5715, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30801074

RESUMO

A modified synthesis method for aqueous nanoparticle printing inks, based upon vacuum-assisted solvent removal, is reported. Poly(3-hexylthiophene):phenyl C61 butyric acid methyl ester nanoparticle inks were prepared via this modified miniemulsion method, leading to both an improvement in photoactive layer morphology and a substantial reduction in the ink fabrication time. A combination of UV-visible spectroscopy, photoluminescence spectroscopy and scanning transmission X-ray microscopy measurements revealed a nanoparticle morphology comprising highly intermixed donor-acceptor domains. Consistent with these measurements, dynamic mechanical thermal analysis of the nanoparticles showed a glass transition temperature (Tg) of 104 °C, rather than a pure polymer phase or pure fullerene phase Tg. Together the spectroscopy, microscopy and thermomechanical data indicate that rapid solvent removal generates a more blended nanoparticle morphology. As such, this study highlights a new experimental lever for optimising nanostructure in the photoactive layer of nanoparticulate organic photovoltaic devices by enabling highly intermixed donor-acceptor architectures to be built from customised nanoparticulate inks.

6.
Sheng Li Xue Bao ; 71(6): 935-945, 2019 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-31879748

RESUMO

Speech comprehension is a central cognitive function of the human brain. In cognitive neuroscience, a fundamental question is to understand how neural activity encodes the acoustic properties of a continuous speech stream and resolves multiple levels of linguistic structures at the same time. This paper reviews the recently developed research paradigms that employ electroencephalography (EEG) or magnetoencephalography (MEG) to capture neural tracking of acoustic features or linguistic structures of continuous speech. This review focuses on two questions in speech processing: (1) The encoding of continuously changing acoustic properties of speech; (2) The representation of hierarchical linguistic units, including syllables, words, phrases and sentences. Studies have found that the low-frequency cortical activity tracks the speech envelope. In addition, the cortical activities on different time scales track multiple levels of linguistic units and constitute a representation of hierarchically organized linguistic units. The article reviewed these studies, which provided new insights into the processes of continuous speech in the human brain.


Assuntos
Eletroencefalografia , Magnetoencefalografia , Fala , Estimulação Acústica , Humanos , Fala/fisiologia , Percepção da Fala
7.
J Environ Sci (China) ; 52: 111-117, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28254029

RESUMO

The occurrence of antibiotics in the environment has recently raised serious concern regarding their potential threat to aquatic ecosystem and human health. In this study, the magnetic ion exchange (MIEX) resin was applied for removing three commonly-used antibiotics, sulfamethoxazole (SMX), tetracycline (TCN) and amoxicillin (AMX) from water. The results of batch experiments show that the maximum adsorption capacities on the MIEX resin for SMX, TCN and AMX were 789.32, 443.18 and 155.15µg/mL at 25°C, respectively, which were 2-7 times that for the powdered activated carbon. The adsorption kinetics of antibiotics on the MIEX resin could be simulated by the pseudo-second-order model (R2=0.99), and the adsorption isotherm data were well described by the Langmuir model (R2=0.97). Solution pH exhibited a remarkable impact on the adsorption process and the absorbed concentrations of the tested antibiotics were obtained around the neutral pH. The MIEX resin could be easily regenerated by 2mol/L NaCl solution and maintained high adsorption removal for the tested antibiotics after regeneration. Anion exchange mechanism mainly controlled the adsorption of antibiotic and the formation of hydrogen binding between the antibiotic and resin can also result in the increase of adsorption capacity. The high adsorption capacity, fast adsorption rate and prominent reusability make the MIEX resin a potential adsorbent in the application for removing antibiotics from water.


Assuntos
Absorção Fisico-Química , Antibacterianos/química , Resinas de Troca Iônica/química , Magnetismo , Poluentes Químicos da Água/química , Purificação da Água/métodos , Troca Iônica
8.
Bull Environ Contam Toxicol ; 92(5): 525-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24374743

RESUMO

This study investigated the effect of ambient Cadmium (Cd) on haemocyte apoptosis of the shrimp, Penaeus monodon. Cellular response was determined in Cd-exposed (0, 0.05, 0.5 and 5 mg L(-1)) shrimp. Results showed that 0.05 mg L(-1) Cd(2+) had no significant effect on the haemocyte parameters during the 48 h exposure. Cadmium at doses of 0.5 and 5 mg L(-1) depressed the total haemocyte count (THC), and increased reactive oxygen species (ROS) production and apoptosis ratio in haemocytes. Esterase activity increased in shrimp exposed to 0.5 mg L(-1) Cd(2+) for 6 h, and decreased to the initial level later. Depressed esterase activity could be observed in shrimp after 24 and 48 h exposure to 5 mg L(-1) Cd(2+). These results demonstrated that Cd(2+) modified esterase activity and induced ROS generation, which led to haemocyte apoptosis and THC reduction. Oxidative stress is one of the induction mechanisms for Cd-caused apoptosis of shrimp haemocytes.


Assuntos
Cádmio/toxicidade , Hemócitos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Apoptose , Hemócitos/patologia , Hemócitos/fisiologia , Estresse Oxidativo , Penaeidae , Espécies Reativas de Oxigênio/metabolismo
9.
J Environ Sci (China) ; 26(8): 1623-9, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25108718

RESUMO

Swine wastewater is an important pollution source of antibiotics entering the aquatic environment. In this work, the adsorption behavior of sulfamethazine (SMN), a commonly-used sulfonamide antibiotic, on activated sludge from a sequencing batch reactor treating swine wastewater was investigated. The results show that the adsorption of SMN on activated sludge was an initially rapid process and reached equilibrium after 6hr. The removal efficiency of SMN from the water phase increased with an increasing concentration of mixed liquor suspended solids, while the adsorbed concentration of SMN decreased. Solution pH influenced both the speciation of SMN and the surface properties of activated sludge, thus significantly impacting the adsorption process. A linear partition model could give a good fit for the equilibrium concentrations of SMN at the test temperatures (i.e., 10, 20 and 30°C). The partition coefficient (Kd) was determined to be 100.5L/kg at 20°C, indicating a quite high adsorption capacity for SMN. Thermodynamic analysis revealed that SMN adsorption on activated sludge was an exothermic process. This study could help to clarify the fate and behavior of sulfonamide antibiotics in the activated sludge process and assess consequent environmental risks arising from sludge disposal as well.


Assuntos
Anti-Infecciosos/química , Esgotos/química , Sulfametazina/química , Suínos , Eliminação de Resíduos Líquidos/métodos , Adsorção , Animais , Concentração de Íons de Hidrogênio , Estrutura Molecular , Poluentes Químicos da Água
10.
Adv Mater ; 36(15): e2309672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38206096

RESUMO

Development of both organic photovoltaics (OPVs) and organic photocatalysts has focused on utilizing the bulk heterojunction (BHJ). The BHJ promotes charge separation and enhances the carrier lifetime, but may give rise to increased charge traps, hindering performance. Here, high photocatalytic and photovoltaic performance is displayed by electron donor-acceptor (D-A) nanoparticles (NPs) and films, using the nonfullerene acceptor Y6 and polymer donor PIDT-T8BT. In contrast to conventional D-A systems, the charge generation in PIDT-T8BT:Y6 NPs is mainly driven by Y6, allowing a high performance even at a low D:A mass ratio of 1:50. The high performance at the low mass ratio is attributed to the amorphous behavior of PIDT-T8BT. Low ratios are generally thought to yield lower efficiency than the more conventional ≈1:1 ratio. However, the OPVs exhibit peak performance at a D:A ratio of 1:5. Similarly the NPs used for photocatalytic hydrogen evolution show peak performance at the 1:6.7 D:A ratio. Interestingly, for the PIDT-T8BT:Y6 system, as the polymer proportion increases, a reduced photocatalytic and photovoltaic performance is observed. The unconventional D:A ratios provide lower recombination losses and increased charge-carrier lifetime with undisrupted ambipolar charge transport in bulk Y6, enabling better performance than conventional ratios. This work reports novel light-harvesting materials in which performance is reduced due to unfavorable morphology as D:A ratios move toward conventional ratios of 1:1.2-1:1.

11.
Fish Shellfish Immunol ; 35(6): 2032-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24513495

RESUMO

A flow cytometric method to measure the production of intracellular nitric oxide (NO) was adapted for use with shrimp haemocytes. We applied fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA) for NO detection in haemocytes from the tiger shrimp Penaeus monodon, and used flow cytometry to quantify fluorescence intensity in individual haemocyte. The optimized protocol for intracellular NO analysis consists to incubate haemocytes with DAF-FM DA at 10 µM for 60 min to determine the mean fluorescence intensity. Result showed that NO was also produced in the untreated shrimp haemocytes. NO level in granular cells and semigranular cells were much higher than that in hyaline cells. Defined by different characteristic of NO content, three subsets of haemocytes were observed. Zymosan A at dose of 10 or 100 particles per haemocyte triggered higher DAF-FM fluorescence intensity in granular and semigranular cells, than PMA that had no significant impact on all three cell types. These results indicate that granular and semigranular cells are the primary cells for NO generation. Cytochalasin B significantly inhibited the NO level induced by zymosan A. NG-Monomethyl-L-arginine (L-NMMA) and diphenylene iodonium chloride (DPI) significantly suppressed the DAF-FM fluorescence in haemocytes, but apocynin could not modulate it, indicating that the DAF-FM fluorescence was closely related to the activity of NO-synthase pathway. The NO donor sodium nitroprusside (SNP) improved the DAF-FM fluorescence in haemocytes, while the NO scavenger C-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) significantly decreased the fluorescence, demonstrating that the fluorescence intensity of DAF-FM is mainly dependent on the intracellular NO level.


Assuntos
Citometria de Fluxo/métodos , Hemócitos/metabolismo , Óxido Nítrico/metabolismo , Penaeidae/metabolismo , Animais , Hemócitos/efeitos dos fármacos , Penaeidae/citologia , Acetato de Tetradecanoilforbol/farmacologia , Zimosan/farmacologia
12.
Food Chem ; 428: 136774, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37433255

RESUMO

In this work, a lateral flow assay for Listeria monocytogenes was developed based on phage tail fiber protein (TFP) and triple-functional nanozyme probes with capture-separation-catalytic activity. Inspired by interaction between phage and bacteria, TFP of L. monocytogenes phage was immobilized on test line as capture molecule, which replaced traditional antibody and aptamer. After Gram-positive bacteria was captured and separated from samples by nanozyme probes modified with vancomycin (Van), TFP specifically recognized L. monocytogenes and overcame non-specific binding of Van. Special color reaction between Coomassie Brilliant Blue and bovine serum albumin which was an amplification carrier on probe was simply utilized as control zone to replace traditional control line. Relying on enzyme-like catalytic activity of nanozyme, this biosensor realized improved sensitivity and colorimetric quantitative detection with a detection limit of 10 CFU mL-1. Analytic performance results suggested this TFP-based biosensor provided a portable, sensitive and specific strategy to detect pathogen.


Assuntos
Bacteriófagos , Técnicas Biossensoriais , Listeria monocytogenes , Vancomicina , Técnicas Biossensoriais/métodos , Fenômenos Magnéticos
13.
Front Pharmacol ; 14: 1335019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155903

RESUMO

Malignant tumors have long been a prominent subject of research in order to foster innovation and advancement in diagnostic and therapeutic modalities. However, the current clinical treatment of malignant tumors faces significant limitations. In light of recent advancements, the World Health Organization (WHO) officially designated malignant tumors as a chronic disease in 2006. Accordingly, maintaining the tumor in a stable state and minimizing its detrimental impact on the body emerges as a potentially advantageous approach to oncological treatment. One emerging strategy that has garnered substantial attention from the academic community is the construction of a biomineralized layer surrounding solid tumors for tumor blockade therapy. This innovative approach is regarded as safe, effective, and long-lasting. This review aims to provide a comprehensive summary of the advancements made in the utilization of biomineralization for the diagnosis and treatment of malignant tumors.

14.
Sci Rep ; 13(1): 14637, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669999

RESUMO

We report the ferromagnetism in a new bulk form Cu-based magnetic semiconductor (La,Ba)(Cu,Mn)SO, which is iso-structural to the prototypical iron-based 1111-type superconductor LaFeAsO. Starting from the parent compound LaCuSO, carriers are introduced via the substitutions of La for Ba while spins are introduced via the substitutions of Cu for Mn. Spins are mediated by carriers, which develops into the long range ferromagnetic ordering. The maximum Curie temperature [Formula: see text] reaches up to [Formula: see text] 170 K with the doping levels of 10% Ba and 5% Mn. By comparing to the (La,Sr)(Cu,Mn)SO where Sr and Mn are co-doped into LaCuSO, we demonstrate that negative chemical pressure would suppress the ferromagnetic ordering.

15.
Adv Sci (Weinh) ; 9(31): e2203941, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36008141

RESUMO

Emerging photoelectrocatalysis (PEC) systems synergize the advantages of electrocatalysis (EC) and photocatalysis (PC) and are considered a green and efficient approach to CO2 conversion. However, improving the selectivity and conversion rate remains a major challenge. Strategies mimicking natural photosynthesis provide a prospective way to convert CO2 with high efficiency. Herein, several typical strategies are described for constructing biomimetic photoelectric functional interfaces; such interfaces include metal cocatalysts/semiconductors, small molecules/semiconductors, molecular catalysts/semiconductors, MOFs/semiconductors, and microorganisms/semiconductors. The biomimetic PEC interface must have enhanced CO2 adsorption capacity, preferentially activate CO2 , and have an efficient conversion ability; with these properties, it can activate CO bonds effectively and promote electron transfer and CC coupling to convert CO2 to single-carbon or multicarbon products. Interfacial electron transfer and proton coupling on the biomimetic PEC interface are also discussed to clarify the mechanism of CO2 reduction. Finally, the existing challenges and perspectives for biomimetic photoelectrocatalytic CO2 reduction are presented.


Assuntos
Biomimética , Dióxido de Carbono , Dióxido de Carbono/química , Fotossíntese , Catálise , Semicondutores
16.
Artigo em Inglês | MEDLINE | ID: mdl-36248435

RESUMO

Background: Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by progressive oral and ocular dryness that correlates poorly with autoimmune damage to the glands. CheReCunJin (CRCJ) formula is a prescription formulated according to the Chinese medicine theory for SS treatment. Objective: This study aimed to explore the underlying mechanisms of CRCJ against SS. Methods: The databases, including Traditional Chinese Medicine System Pharmacology, Encyclopedia of Traditional Chinese Medicine, Bioinformatics Analysis Tool for the molecular mechanism of Traditional Chinese Medicine, and Traditional Chinese Medicine Integrated Databases, obtained the active ingredients and predicted targets of CRCJ. Then, DrugBank, Therapeutic Target Database, Genecards, Comparative Toxicogenomics Database, and DisGeNET disease databases were used to screen the predicted targets of SS. Intersected targets of CRCJ and SS were visualized by using Venn diagrams. The overlapping targets were uploaded to the protein-protein interaction network analysis search tool. Cytoscape 3.8.2 software constructed a "compound-targets-disease" network. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analyses characterized potential targets' biological functions and pathways. AutoDock Vina 1.1.2 software was used to research and verify chemical effective drug components and critical targets. Results: From the database, we identified 878 active components and 2578 targets of CRCJ, and 827 SS-related targets. 246 SS-related genes in CRCJ were identified by intersection analysis, and then ten hub genes were identified as crucial potential targets from PPI, including ALB, IL-6, TNF, INS, AKT1, IL1B, VEGFA, TP53, JUN, and TLR4. The process of CRCJ action against SS was mainly involved in human cytomegalovirus infection and Th17 cell differentiation, as well as the toll-like receptor signaling and p53 signaling pathways. Molecular docking showed that the bioactive compounds of CRCJ had a good binding affinity with hub targets. Conclusions: The results showed that CRCJ could activate multiple pathways and treat SS through multiple compounds and targets. This study lays a foundation for better elucidation of the molecular mechanism of CRCJ in the treatment of SS, and also provides basic guidance for future research on Chinese herbal compounds.

17.
Nanoscale Adv ; 4(15): 3121-3130, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36132816

RESUMO

Highly processible graphene oxide (GO) has a diversity of applications as a material readily dispersed in aqueous media. However, methods for preparing such free-standing GO use hazardous and toxic reagents and generate significant waste streams. This is an impediment for uptake of GO in any application, for developing sustainable technologies and industries, and overcoming this remains a major challenge. We have developed a robust scalable continuous flow method for fabricating GO directly from graphite in 30% aqueous hydrogen peroxide which dramatically minimises the generation of waste. The process features the continuous flow thin film microfluidic vortex fluidic device (VFD), operating at specific conditions while irradiated sequentially by UV LED than a NIR pulsed laser. The resulting 'green' graphene oxide (gGO) has unique properties, possessing highly oxidized edges with large intact sp2 domains which gives rise to exceptional electrical and optical properties, including purple to deep blue emission of narrow full width at half maximum (<35 nm). Colloidally stable gGO exhibits cytotoxicity owing to the oxidised surface groups while solid-state films of gGO are biocompatible. The continuous flow method of generating gGO also provides unprecedented control of the level of oxidation and its location in the exfoliated graphene sheets by harnessing the high shear topological fluid flows in the liquid, and varying the wavelength, power and pulse frequency of the light source.

18.
J Environ Sci (China) ; 23(10): 1729-37, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22432270

RESUMO

This work describes a systematic approach to the development of a method for simultaneous determination of three classes of veterinary antibiotics in the suspended solids (SS) of swine wastewater, including five sulfonamides, three tetracyclines and one macrolide (tiamulin). The entire procedures for sample pretreatment, ultrasonic extraction (USE), solid-phase extraction (SPE), and liquid chromatography-mass spectrometry (LC-MS) quantification were examined and optimized. The recovery efficiencies were found to be 76%-104% for sulfonamides, 81%-112% for tetracyclines, and 51%-64% for tiamulin at three spiking levels. The intra-day and inter-day precisions, as expressed by the relative standard deviation (RSD), were below 17%. The method detection limits (MDLs) were between 0.14 and 7.14 microg/kg, depending on a specific antibiotic studied. The developed method was applied to field samples collected from three concentrated swine feeding plants located in Beijing, Shanghai and Shandong province of China. All the investigated antibiotics were detected in both SS and liquid phase of swine wastewater, with partition coefficients (logK(d)) ranging from 0.49 to 2.30. This study demonstrates that the SS can not be ignored when determining the concentrations of antibiotics in swine wastewater.


Assuntos
Antibacterianos/análise , Sulfonamidas/análise , Tetraciclinas/análise , Poluentes Químicos da Água/análise , Animais , Cromatografia Líquida/métodos , Diterpenos/análise , Extração em Fase Sólida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Suínos , Espectrometria de Massas em Tandem/métodos , Ultrassom/métodos , Eliminação de Resíduos Líquidos/métodos
19.
Polymers (Basel) ; 13(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34451185

RESUMO

Novel thermoplastic polyamide elastomers (TPAEs) consisting of long-chain semicrystalline polyamide 1212 (PA1212) and amorphous polyetheramine were synthesized via one-pot melt polycondensation. The method provides accessible routes to prepare TPAEs with a high tolerance of compatibility between polyamide and polyether oligomers compared with the traditional two-step method. These TPAEs with 10 wt % to 76 wt % of soft content were obtained by reaction of dodecanedioic acid, 1,12-dodecanediamine, and poly(propylene glycol) (PPG) diamine. The structure-property relationships of TPAEs were systematically studied. The chemical structure and the morphologic analyses have revealed that microphase separation occurs in the amorphous region. The TPAEs that have long-chain PPG segments consist of a crystalline polyamide domain, amorphous polyamide-rich domain, and amorphous polyetheramine-rich domain, while the ones containing short-chain PPG segments comprise of a crystalline polyamide domain and miscible amorphous polyamide phase and amorphous polyetheramine phase due to the compatibility between short-chain polyetheramine and amorphous polyamide. These novel TPAEs show good damping performance at low temperature, especially the TPAEs that incorporated 76 wt % and 62 wt % of PPG diamine. The TPAEs exhibit high elastic properties and low residual strain at room temperature. They are lightweight with density between 1.01 and 1.03 g/cm3. The long-chain TPAEs have well-balanced properties of low density, high elastic return, and high shock-absorbing ability. This work provides a route to expand TPAEs to damping materials with special application for sports equipment used in extremely cold conditions such as ski boots.

20.
Bioact Mater ; 6(8): 2467-2478, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33553828

RESUMO

The management of oral and maxillofacial tissue defects caused by tumors, trauma, and congenital or acquired deformities has been a major challenge for surgeons over the last few decades. Autologous tissue transplantation, the gold standard of tissue reconstruction, is a valid method for repairing the oral and maxillofacial functions and aesthetics. However, several limitations hinder its clinical applications including complications of donor sites, limited tissue volume, and uncertain long-term outcomes. Adipose-derived mesenchymal stem cells (ADMSCs) widely exist in adipose tissue and can be easily obtained through liposuction. Like the bone marrow-derived mesenchymal stem cells (BMSCs), ADMSCs also have the multi-pluripotent potencies to differentiate into osteoblasts, chondrocytes, neurons, and myocytes. Therefore, the multilineage capacity of ADMSCs makes them valuable for cell-based medical therapies. In recent years, researchers have developed many candidates of ADMSCs-based biomaterial scaffolds to cater for the needs of oral and maxillofacial tissue engineering due to their superior performance. This review presents the advances and applications of ADMSCs-based biomaterial scaffolds, and explores their tissue engineering prospects in oral and maxillofacial reconstructions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa