Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nature ; 613(7945): 767-774, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450356

RESUMO

Mu-opioid receptor (µOR) agonists such as fentanyl have long been used for pain management, but are considered a major public health concern owing to their adverse side effects, including lethal overdose1. Here, in an effort to design safer therapeutic agents, we report an approach targeting a conserved sodium ion-binding site2 found in µOR3 and many other class A G-protein-coupled receptors with bitopic fentanyl derivatives that are functionalized via a linker with a positively charged guanidino group. Cryo-electron microscopy structures of the most potent bitopic ligands in complex with µOR highlight the key interactions between the guanidine of the ligands and the key Asp2.50 residue in the Na+ site. Two bitopics (C5 and C6 guano) maintain nanomolar potency and high efficacy at Gi subtypes and show strongly reduced arrestin recruitment-one (C6 guano) also shows the lowest Gz efficacy among the panel of µOR agonists, including partial and biased morphinan and fentanyl analogues. In mice, C6 guano displayed µOR-dependent antinociception with attenuated adverse effects, supporting the µOR sodium ion-binding site as a potential target for the design of safer analgesics. In general, our study suggests that bitopic ligands that engage the sodium ion-binding pocket in class A G-protein-coupled receptors can be designed to control their efficacy and functional selectivity profiles for Gi, Go and Gz subtypes and arrestins, thus modulating their in vivo pharmacology.


Assuntos
Desenho de Fármacos , Fentanila , Morfinanos , Receptores Opioides mu , Animais , Camundongos , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Arrestinas/metabolismo , Microscopia Crioeletrônica , Fentanila/análogos & derivados , Fentanila/química , Fentanila/metabolismo , Ligantes , Morfinanos/química , Morfinanos/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Receptores Opioides mu/ultraestrutura , Sítios de Ligação , Nociceptividade
2.
Chembiochem ; 25(6): e202300841, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38289703

RESUMO

The opioids are powerful analgesics yet possess contingencies that can lead to opioid-use disorder. Chemical probes derived from the opioid alkaloids can provide deeper insight into the molecular interactions in a cellular context. Here, we designed and developed photo-click morphine (PCM-2) as a photo-affinity probe based on morphine and dialkynyl-acetyl morphine (DAAM) as a metabolic acetate reporter based on heroin. Application of these probes to SH-SY5Y, HEK293T, and U2OS cells revealed that PCM-2 and DAAM primarily localize to the lysosome amongst other locations inside the cell by confocal microscopy and chemical proteomics. Interaction site identification by mass spectrometry revealed the mitochondrial phosphate carrier protein, solute carrier family 25 member 3, SLC25A3, and histone H2B as acylation targets of DAAM. These data illustrate the utility of chemical probes to measure localization and protein interactions in a cellular context and will inform the design of probes based on the opioids in the future.


Assuntos
Analgésicos Opioides , Neuroblastoma , Humanos , Células HEK293 , Morfina
3.
J Neurosci Res ; 100(1): 35-47, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32506472

RESUMO

Heroin, a mu agonist, acts through the mu opioid receptor. The mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, creating an array of splice variants that are conserved from rodent to humans. Increasing evidence suggests that these OPRM1 splice variants are pharmacologically important in mediating various actions of mu opioids, including analgesia, tolerance, physical dependence, rewarding behavior, as well as addiction. In the present study, we examine expression of the OPRM1 splice variant mRNAs in the medial prefrontal cortex (mPFC), one of the major brain regions involved in decision-making and drug-seeking behaviors, of male human heroin abusers and male rats that developed stable heroin-seeking behavior using an intravenous heroin self-administration (SA) model. The results show similar expression profiles among multiple OPRM1 splice variants in both human control subjects and saline control rats, illustrating conservation of OPRM1 alternative splicing from rodent to humans. Moreover, the expressions of several OPRM1 splice variant mRNAs were dysregulated in the postmortem mPFCs from heroin abusers compared to the control subjects. Similar patterns were observed in the rat heroin SA model. These findings suggest potential roles of the OPRM1 splice variants in heroin addiction that could be mechanistically explored using the rat heroin SA model.


Assuntos
Heroína , Receptores Opioides mu , Transtornos Relacionados ao Uso de Substâncias/genética , Processamento Alternativo , Animais , Humanos , Masculino , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Ratos , Receptores Opioides mu/genética
4.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328429

RESUMO

The mu opioid receptor has a distinct place in the opioid receptor family, since it mediates the actions of most opioids used clinically (e.g., morphine and fentanyl), as well as drugs of abuse (e.g., heroin). The single-copy mu opioid receptor gene, OPRM1, goes through extensive alternative pre-mRNA splicing to generate numerous splice variants that are conserved from rodents to humans. These OPRM1 splice variants can be classified into three structurally distinct types: (1) full-length 7 transmembrane (TM) carboxyl (C)-terminal variants; (2) truncated 6TM variants; and (3) single TM variants. Distinct pharmacological functions of these splice variants have been demonstrated by both in vitro and in vivo studies, particularly by using several unique gene-targeted mouse models. These studies provide new insights into our understanding of the complex actions of mu opioids with regard to OPRM1 alternative splicing. This review provides an overview of the studies that used these gene-targeted mouse models for exploring the functional importance of Oprm1 splice variants.


Assuntos
Analgésicos Opioides , Receptores Opioides mu , Processamento Alternativo , Analgésicos Opioides/farmacologia , Animais , Camundongos , Modelos Animais , Morfina/farmacologia , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo
5.
Cell Mol Neurobiol ; 41(5): 827-834, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33978862

RESUMO

This special issue is a tribute to our mentor, colleague and friend, Gavril W. Pasternak, MD, PhD. Homage to the breadth and depth of his work (~ 450 publications) over a 40 career in pharmacology and medicine cannot be captured fully in one special issue, but the 22 papers collected herein represent seven of the topics near and dear to Gav's heart, and the colleagues, friends and mentees who held him near to theirs. The seven themes include: (1) sites and mechanisms of opioid actions in vivo; (2) development of novel analgesic agents; (3) opioid tolerance, withdrawal and addiction: mechanisms and treatment; (4) opioid receptor splice variants; (5) novel research tools and approaches; (6) receptor signaling and crosstalk in vitro; and (7) mentorship. This introduction to the issue summarizes contributions and includes formal and personal remembrances of Gav that illustrate his personality, warmth, and dedication to making a difference in patient care and people's lives.


Assuntos
Analgesia/história , Analgésicos Opioides/história , Pessoal de Laboratório/história , Manejo da Dor/história , Dor/história , Médicos/história , História do Século XX , História do Século XXI , Humanos , Receptores Opioides/história
6.
Cell Mol Neurobiol ; 41(5): 1059-1074, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33033993

RESUMO

The biased signaling has been extensively studied in the original mu opioid receptor (MOR-1), particularly through G protein and ß-arrestin2 signaling pathways. The concept that the G protein pathway is often linked to the therapeutic effect of the drug, while the ß-arrestin pathway is associated to the side effects has been proposed to develop biased analgesic compounds with limited side-effects associated with traditional opiates. The mu opioid receptor gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, generating multiple splice variants or isoforms that are conserved from rodent to human. One type of the Oprm1 splice variants are the full-length 7 transmembrane (7TM) C-terminal splice variants, which have identical receptor structures including entire binding pocket, but contain a different intracellular C-terminal tail resulted from 3' alternative splicing. Increasing evidence suggest that these full-length 7TM C-terminal variants play important roles in mu opioid pharmacology, raising questions regarding biased signaling at these multiple C-terminal variants. In the present study, we investigated the effect of different C-terminal variants on mu agonist-induced G protein coupling, ß-arrestin2 recruitment, and ultimately, signaling bias. We found that mu agonists produced marked differences in G protein activation and ß-arrestin2 recruitment among various C-terminal variants, leading to biased signaling at various level. Particularly, MOR-1O, an exon 7-associated variant, showed greater ß-arrestin2 bias for most mu agonists than MOR-1, an exon 4-associated variant. Biased signaling of G protein-coupled receptors has been defined by evidences that different agonists can produce divergent signaling transduction pathways through a single receptor. Our findings that a single mu agonist can induce differential signaling through multiple 7TM splice variants provide a new perspective on biased signaling at least for Oprm1, which perhaps is important for our understanding of the complex mu opioid actions in vivo where all the 7TM splice variants co-exist.


Assuntos
Processamento Alternativo/fisiologia , Analgésicos Opioides/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Transdução de Sinais/fisiologia , Processamento Alternativo/genética , Sequência de Aminoácidos , Analgésicos Opioides/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Células HEK293 , Humanos , Naltrexona/análogos & derivados , Naltrexona/metabolismo , Naltrexona/farmacologia , Ligação Proteica/fisiologia , Receptores Opioides mu/agonistas , Transdução de Sinais/efeitos dos fármacos
7.
Cell Mol Neurobiol ; 41(5): 977-993, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32424771

RESUMO

Mu opioid receptors (MOR-1) mediate the biological actions of clinically used opioids such as morphine, oxycodone, and fentanyl. The mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, generating multiple splice variants. One type of splice variants are truncated variants containing only six transmembrane domains (6TM) that mediate the analgesic action of novel opioid drugs such as 3'-iodobenzoylnaltrexamide (IBNtxA). Previously, we have shown that IBNtxA is a potent analgesic effective in a spectrum of pain models but lacks many side-effects associated with traditional opiates. In order to investigate the targets labeled by IBNtxA, we synthesized two arylazido analogs of IBNtxA that allow photolabeling of mouse mu opioid receptors (mMOR-1) in transfected cell lines and mMOR-1 protein complexes that may comprise the 6TM sites in mouse brain. We demonstrate that both allyl and alkyne arylazido derivatives of IBNtxA efficiently radio-photolabeled mMOR-1 in cell lines and MOR-1 protein complexes expressed either exogenously or endogenously, as well as found in mouse brain. In future, design and application of such radio-photolabeling ligands with a conjugated handle will provide useful tools for further isolating or purifying MOR-1 to investigate site specific ligand-protein contacts and its signaling complexes.


Assuntos
Analgésicos Opioides/metabolismo , Azidas/metabolismo , Encéfalo/metabolismo , Naltrexona/análogos & derivados , Marcadores de Fotoafinidade/metabolismo , Receptores Opioides/metabolismo , Analgésicos Opioides/síntese química , Animais , Azidas/síntese química , Encéfalo/efeitos dos fármacos , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naltrexona/síntese química , Naltrexona/metabolismo , Marcadores de Fotoafinidade/síntese química , Ligação Proteica/fisiologia , Ensaio Radioligante/métodos
8.
FASEB J ; 34(3): 4540-4556, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31999011

RESUMO

The mu-opioid receptor gene, OPRM1, undergoes extensive alternative splicing, creating an array of splice variants that are conserved from rodent to human. Both mouse and human OPRM1 have five exon 5-associated seven transmembrane full-length carboxyl terminal variants, MOR-1B1, MOR-1B2, MOR-1B3, MOR-1B4, and MOR-1B5, all of which are derived from alternative 3' splicing from exon 3 to alternative sites within exon 5. The functional relevance of these exon 5-associated MOR-1Bs has been demonstrated in mu agonist-induced G protein coupling, adenylyl cyclase activity, receptor internalization and desensitization, and post-endocytic sorting, as well as region-specific expression at the mRNA level. In the present study, we mapped a polyadenylation site for both mouse and human MOR-1Bs that defines the 3'-untranslated regions (3'-UTR) of MOR-1Bs and stabilizes mMOR-1Bs mRNAs. We identified a conserved miR378a-3p sequence in the 3'-UTR of both mouse and human MOR-1BS transcripts through which miR-378a-3p can regulate the expression of MOR-1Bs at the mRNA level. Chronic morphine treatment significantly increased the miR-378-3p level in Be(2)C cells and the brainstem of the morphine tolerant mice, contributing to the decreased expression of the mouse and human MOR-1B3 and MOR-1B4. Our study provides new insights into the role of miRNAs and Oprm1 splice variants in morphine tolerance.


Assuntos
Éxons/genética , MicroRNAs/metabolismo , Morfina/uso terapêutico , Regiões 3' não Traduzidas/genética , Animais , Sítios de Ligação/genética , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Plasmídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917474

RESUMO

There exist three main types of endogenous opioid peptides, enkephalins, dynorphins and ß-endorphin, all of which are derived from their precursors. These endogenous opioid peptides act through opioid receptors, including mu opioid receptor (MOR), delta opioid receptor (DOR) and kappa opioid receptor (KOR), and play important roles not only in analgesia, but also many other biological processes such as reward, stress response, feeding and emotion. The MOR gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, generating multiple splice variants or isoforms. One type of these splice variants, the full-length 7 transmembrane (TM) Carboxyl (C)-terminal variants, has the same receptor structures but contains different intracellular C-terminal tails. The pharmacological functions of several endogenous opioid peptides through the mouse, rat and human OPRM1 7TM C-terminal variants have been considerably investigated together with various mu opioid ligands. The current review focuses on the studies of these endogenous opioid peptides and summarizes the results from early pharmacological studies, including receptor binding affinity and G protein activation, and recent studies of ß-arrestin2 recruitment and biased signaling, aiming to provide new insights into the mechanisms and functions of endogenous opioid peptides, which are mediated through the OPRM1 7TM C-terminal splice variants.


Assuntos
Processamento Alternativo , Peptídeos Opioides/metabolismo , Precursores de RNA/metabolismo , Receptores Opioides mu/metabolismo , Animais , Humanos , Isoformas de Proteínas/metabolismo
10.
Mol Pharmacol ; 98(4): 518-527, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32723770

RESUMO

The µ-opioid receptor gene undergoes extensive alternative splicing to generate an array of splice variants. One group of splice variants excludes the first transmembrane (TM) domain and contains six TM domains. These 6TM variants are essential for the action of a novel class of analgesic drugs, including 3-iodobenzoyl-6ß-naltrexamide, which is potent against a spectrum of pain models without exhibiting the adverse side effects of traditional opiates. The 6TM variants are also involved in analgesic action through other drug classes, including δ-opioid and κ-opioids and α 2-adrenergic drugs. Of the five 6TM variants in mouse, mouse µ-opioid receptor (mMOR)-1G is abundant and conserved from rodent to human. In the present study, we demonstrate a new function of mMOR-1G in enhancing expression of the full-length 7TM µ-opioid receptor, mMOR-1. When coexpressed with mMOR-1 in a Tet-Off inducible CHO cell line, mMOR-1G has no effect on mMOR-1 mRNA expression but greatly increases mMOR-1 protein expression in a dose-dependent manner determined by opioid receptor binding and [35S] guanosine 5'-3-O-(thio)triphosphate binding. Subcellular fractionation analysis using OptiPrep density gradient centrifugation shows an increase of functional mMOR-1 receptor in plasma membrane-enriched fractions. Using a coimmunoprecipitation approach, we further demonstrate that mMOR-1G physically associates with mMOR-1 starting at the endoplasmic reticulum, suggesting a chaperone-like function. These data provide a molecular mechanism for how mMOR-1G regulates expression and function of the full-length 7TM µ-opioid receptor. SIGNIFICANCE STATEMENT: The current study establishes a novel function of mouse µ-opioid receptor (mMOR)-1G, a truncated splice variant with six transmembrane (TM) domains of the mouse µ-opioid receptor gene, in enhancing expression of the full-length 7TM mMOR-1 through a chaperone-like function.


Assuntos
Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Processamento Alternativo , Animais , Células CHO , Linhagem Celular , Cricetulus , Retículo Endoplasmático/metabolismo , Variação Genética , Humanos , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Multimerização Proteica , Receptores Opioides mu/química
11.
Handb Exp Pharmacol ; 258: 89-125, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31598835

RESUMO

Opioid analgesics, most of which act through mu opioid receptors, have long represented valuable therapeutic agents to treat severe pain. Concerted drug development efforts for over a 100 years have resulted in a large variety of opioid analgesics used in the clinic, but all of them continue to exhibit the side effects, especially respiratory depression, that have long plagued the use of morphine. The recent explosion in fatalities resulting from overdose of prescription and synthetic opioids has dramatically increased the need for safer analgesics, but recent developments in mu receptor research have provided new strategies to develop such drugs. This chapter reviews recent advances in developing novel opioid analgesics from an understanding of mu receptor structure and function. This includes a summary of the mechanism of agonist binding deduced from the crystal structure of mu receptors. It will also highlight the development of novel agonist mechanisms, including biased agonists, bivalent ligands, and allosteric modulators of mu receptor function, and describe how receptor phosphorylation modulates these pathways. Finally, it will summarize research on the alternative pre-mRNA splicing mechanisms that produces a multiplicity of mu receptor isoforms. Many of these isoforms exhibit different pharmacological specificities and brain circuitry localization, thus providing an opportunity to develop novel drugs with increased therapeutic windows.


Assuntos
Analgésicos Opioides/farmacologia , Dor/tratamento farmacológico , Receptores Opioides mu , Humanos , Ligantes , Transtornos Relacionados ao Uso de Opioides
12.
Mol Pharmacol ; 96(2): 247-258, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31243060

RESUMO

Circular RNAs (circRNAs) are a distinct category of single-stranded, covalently closed RNAs formed by backsplicing. The functions of circRNAs are incompletely known and are under active investigation. Here, we report that in addition to traditional linear mRNAs (linRNA), mouse, rat, and human opioid receptor genes generate exonic circRNA isoforms. Using standard molecular biologic methods, Oprm1 circRNAs (circOprm1) were detected in RNAs of rodent and human brains and spinal cords, as well as human neuroblastoma cells, suggesting evolutionary conservation. Sequencing confirmed backsplicing using canonical splice sites. Oprm1 circRNAs were sense-stranded circRNAs resistant to RNase R digestion. The relative abundance of Oprm1 circRNA to linRNA determined by quantitative reverse transcription polymerase chain reaction varied among mouse brain regions, with circRNA isoforms predominating in rostral structures and less abundant in brain stem. Chronic morphine exposure in mice increased brain circOprm1e2.3 and circOprm1.e2.e3.e4(302) levels by 1.5- to 1.6-fold relative to linRNA. Sequence analysis predicted numerous microRNA binding sites within Oprm1 circRNA sequences, suggesting a potential role in microRNA sequestration through sponging. In addition, we observed that other opioid receptor genes including δ, κ, and nociceptin receptor genes produced similar circRNAs. In conclusion, all members of the opioid receptor gene family express circRNAs, with Oprm1 circRNA levels exceeding those of linear forms in some regions. SIGNIFICANCE STATEMENT: The modulation of Oprm1 circular RNA (circRNA) expression by morphine, coupled with the high abundance and existence of potential miRNA binding sites with circRNA sequences suggests the potential role of Oprm1 circRNAs in chronic opioid effects such as tolerance.


Assuntos
Encéfalo/metabolismo , Morfina/farmacologia , Neuroblastoma/genética , RNA Circular/genética , Medula Espinal/metabolismo , Animais , Linhagem Celular Tumoral , Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Ratos , Receptores Opioides mu/genética , Análise de Sequência de RNA
13.
Anesth Analg ; 128(2): 365-373, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29649035

RESUMO

BACKGROUND: Levorphanol is a potent analgesic that has been used for decades. Most commonly used for acute and cancer pain, it also is effective against neuropathic pain. The recent appreciation of the importance of functional bias and the uncovering of multiple µ opioid receptor splice variants may help explain the variability of patient responses to different opioid drugs. METHODS: Here, we evaluate levorphanol in a variety of traditional in vitro receptor binding and functional assays. In vivo analgesia studies using the radiant heat tail flick assay explored the receptor selectivity of the responses through the use of knockout (KO) mice, selective antagonists, and viral rescue approaches. RESULTS: Receptor binding studies revealed high levorphanol affinity for all the µ, δ, and κ opioid receptors. In S-GTPγS binding assays, it was a full agonist at most µ receptor subtypes, with the exception of MOR-1O, but displayed little activity in ß-arrestin2 recruitment assays, indicating a preference for G-protein transduction mechanisms. A KO mouse and selective antagonists confirmed that levorphanol analgesia was mediated through classical µ receptors, but there was a contribution from 6 transmembrane targets, as illustrated by a lower response in an exon 11 KO mouse and its rescue with a virally transfected 6 transmembrane receptor splice variant. Compared to morphine, levorphanol had less respiratory depression at equianalgesic doses. CONCLUSIONS: While levorphanol shares many of the same properties as the classic opioid morphine, it displays subtle differences that may prove helpful in its clinical use. Its G-protein signaling bias is consistent with its diminished respiratory depression, while its incomplete cross tolerance with morphine suggests it may prove valuable clinically with opioid rotation.


Assuntos
Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Levorfanol/metabolismo , Levorfanol/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides/metabolismo , Animais , Relação Dose-Resposta a Droga , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica/fisiologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Opioides/agonistas , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(13): 3663-8, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976581

RESUMO

The clinical management of severe pain depends heavily on opioids acting through mu opioid receptors encoded by the Oprm1 gene, which undergoes extensive alternative splicing. In addition to generating a series of prototypic seven transmembrane domain (7TM) G protein-coupled receptors (GPCRs), Oprm1 also produces a set of truncated splice variants containing only six transmembrane domains (6TM) through which selected opioids such as IBNtxA (3'-iodobenzoyl-6ß-naltrexamide) mediate a potent analgesia without many undesirable effects. Although morphine analgesia is independent of these 6TM mu receptor isoforms, we now show that the selective loss of the 6TM variants in a knockout model eliminates the analgesic actions of delta and kappa opioids and of α2-adrenergic compounds, but not cannabinoid, neurotensin, or muscarinic drugs. These observations were confirmed by using antisense paradigms. Despite their role in analgesia, loss of the 6TM variants were not involved with delta opioid-induced seizure activity, aversion to the kappa drug U50, 488H, or α2-mediated hypolocomotion. These observations support the existence of parallel opioid and nonopioid pain modulatory systems and highlight the ability to dissociate unwanted delta, kappa1, and α2 actions from analgesia.


Assuntos
Receptores Opioides mu/genética , Receptores Opioides mu/fisiologia , Processamento Alternativo , Analgesia , Analgésicos Opioides/farmacologia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfina/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Manejo da Dor , Medição da Dor , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Estrutura Terciária de Proteína , Receptores Opioides mu/deficiência
15.
Anesth Analg ; 126(3): 1050-1057, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28991118

RESUMO

BACKGROUND: Most clinical opioids act through µ-opioid receptors. They effectively relieve pain but are limited by side effects, such as constipation, respiratory depression, dependence, and addiction. Many efforts have been made toward developing potent analgesics that lack side effects. Three-iodobenzoyl-6ß-naltrexamide (IBNtxA) is a novel class of opioid active against thermal, inflammatory, and neuropathic pain, without respiratory depression, physical dependence, and reward behavior. The µ-opioid receptor (OPRM1) gene undergoes extensive alternative precursor messenger ribonucleic acid splicing, generating multiple splice variants that are conserved from rodents to humans. One type of variant is the exon 11 (E11)-associated truncated variant containing 6 transmembrane domains (6TM variant). There are 5 6TM variants in the mouse OPRM1 gene, including mMOR-1G, mMOR-1M, mMOR-1N, mMOR-1K, and mMOR-1L. Gene-targeting mouse models selectively removing 6TM variants in E11 knockout (KO) mice eliminated IBNtxA analgesia without affecting morphine analgesia. Conversely, morphine analgesia is lost in an exon 1 (E1) KO mouse that lacks all 7 transmembrane (7TM) variants but retains 6TM variant expression, while IBNtxA analgesia remains intact. Elimination of both E1 and E11 in an E1/E11 double KO mice abolishes both morphine and IBNtxA analgesia. Reconstituting expression of the 6TM variant mMOR-1G in E1/E11 KO mice through lentiviral expression rescued IBNtxA but not morphine analgesia. The aim of this study was to investigate the effect of lentiviral expression of the other 6TM variants in E1/E11 KO mice on IBNtxA analgesia. METHODS: Lentiviruses expressing 6TM variants were packaged in HEK293T cells, concentrated by ultracentrifugation, and intrathecally administered 3 times. Opioid analgesia was determined using a radiant-heat tail-flick assay. Expression of lentiviral 6TM variant messenger ribonucleic acids was examined by polymerase chain reaction (PCR) or quantitative PCR. RESULTS: All the 6TM variants restored IBNtxA analgesia in the E1/E11 KO mouse, while morphine remained inactive. Expression of lentiviral 6TM variants was confirmed by PCR or quantitative PCR. IBNtxA median effective dose values determined from cumulative dose-response studies in the rescued mice were indistinguishable from wild-type animals. IBNtxA analgesia was maintained for up to 33 weeks in the rescue mice and was readily antagonized by the opioid antagonist levallorphan. CONCLUSIONS: Our study demonstrated the pharmacological relevance of mouse 6TM variants in IBNtxA analgesia and established that a common functional core of the receptors corresponding to the transmembrane domains encoded by exons 2 and 3 is sufficient for activity. Thus, 6TM variants offer potential therapeutic targets for a distinct class of analgesics that are effective against broad-spectrum pain models without many side effects associated with traditional opioids.


Assuntos
Analgesia/métodos , Analgésicos Opioides/farmacologia , Medição da Dor/efeitos dos fármacos , Receptores Opioides mu/agonistas , Receptores Opioides mu/fisiologia , Animais , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Medição da Dor/métodos , Variantes Farmacogenômicos/efeitos dos fármacos , Variantes Farmacogenômicos/fisiologia
16.
Proc Natl Acad Sci U S A ; 112(1): 279-84, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535370

RESUMO

Chronic morphine administration is associated with the development of tolerance, both clinically and in animal models. Many assume that tolerance is a continually progressive response to chronic opioid dosing. However, clinicians have long appreciated the ability to manage cancer pain in patients for months on stable opioid doses, implying that extended dosing may eventually result in a steady state in which the degree of tolerance remains constant despite the continued administration of a fixed morphine dose. Preclinical animal studies have used short-term paradigms, typically a week or less, whereas the clinical experience is based upon months of treatment. Chronic administration of different fixed morphine doses produced a progressive increase in the ED50 that peaked at 3 wk in mice, consistent with prior results at shorter times. Continued morphine dosing beyond 3 wk revealed stabilization of the level of tolerance for up to 6 wk with no further increase in the ED50. The degree of tolerance at all time points was dependent upon the dose of morphine. The mRNA levels for the various mu opioid receptor splice variants were assessed to determine whether stabilization of morphine tolerance was associated with changes in their levels. After 6 wk of treatment, mRNA levels of the variants increased as much as 300-fold for selected variants in specific brain regions. These findings reconcile preclinical and clinical observations regarding the development of morphine tolerance.


Assuntos
Processamento Alternativo/genética , Morfina/farmacologia , Receptores Opioides mu/genética , Regulação para Cima/efeitos dos fármacos , Processamento Alternativo/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Morfina/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Opioides mu/metabolismo , Regulação para Cima/genética
18.
Synapse ; 70(10): 395-407, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27223691

RESUMO

Buprenorphine has long been classified as a mu analgesic, although its high affinity for other opioid receptor classes and the orphanin FQ/nociceptin ORL1 receptor may contribute to its other actions. The current studies confirmed a mu mechanism for buprenorphine analgesia, implicating several subsets of mu receptor splice variants. Buprenorphine analgesia depended on the expression of both exon 1-associated traditional full length 7 transmembrane (7TM) and exon 11-associated truncated 6 transmembrane (6TM) MOR-1 variants. In genetic models, disruption of delta, kappa1 or ORL1 receptors had no impact on buprenorphine analgesia, while loss of the traditional 7TM MOR-1 variants in an exon 1 knockout (KO) mouse markedly lowered buprenorphine analgesia. Loss of the truncated 6TM variants in an exon 11 KO mouse totally eliminated buprenorphine analgesia. In distinction to analgesia, the inhibition of gastrointestinal transit and stimulation of locomotor activity were independent of truncated 6TM variants. Restoring expression of a 6TM variant with a lentivirus rescued buprenorphine analgesia in an exon 11 KO mouse that still expressed the 7TM variants. Despite a potent and robust stimulation of (35) S-GTPγS binding in MOR-1 expressing CHO cells, buprenorphine failed to recruit ß-arrestin-2 binding at doses as high as 10 µM. Buprenorphine was an antagonist in DOR-1 expressing cells and an inverse agonist in KOR-1 cells. Buprenorphine analgesia is complex and requires multiple mu receptor splice variant classes but other actions may involve alternative receptors.


Assuntos
Analgésicos Opioides/farmacologia , Buprenorfina/farmacologia , Nociceptividade , Splicing de RNA , Receptores Opioides mu/genética , Animais , Células CHO , Cricetinae , Cricetulus , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Receptores Opioides mu/metabolismo , beta-Arrestina 2/metabolismo
19.
Pharmacol Rev ; 65(4): 1257-317, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24076545

RESUMO

Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.


Assuntos
Analgésicos Opioides/farmacologia , Receptores Opioides mu/metabolismo , Processamento Alternativo , Analgésicos Opioides/uso terapêutico , Animais , Sítios de Ligação , Humanos , Receptores Opioides mu/genética
20.
J Neurosci ; 34(33): 11048-66, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25122903

RESUMO

Single nucleotide polymorphisms (SNPs) in the OPRM1 gene have been associated with vulnerability to opioid dependence. The current study identifies an association of an intronic SNP (rs9479757) with the severity of heroin addiction among Han-Chinese male heroin addicts. Individual SNP analysis and haplotype-based analysis with additional SNPs in the OPRM1 locus showed that mild heroin addiction was associated with the AG genotype, whereas severe heroin addiction was associated with the GG genotype. In vitro studies such as electrophoretic mobility shift assay, minigene, siRNA, and antisense morpholino oligonucleotide studies have identified heterogeneous nuclear ribonucleoprotein H (hnRNPH) as the major binding partner for the G-containing SNP site. The G-to-A transition weakens hnRNPH binding and facilitates exon 2 skipping, leading to altered expressions of OPRM1 splice-variant mRNAs and hMOR-1 proteins. Similar changes in splicing and hMOR-1 proteins were observed in human postmortem prefrontal cortex with the AG genotype of this SNP when compared with the GG genotype. Interestingly, the altered splicing led to an increase in hMOR-1 protein levels despite decreased hMOR-1 mRNA levels, which is likely contributed by a concurrent increase in single transmembrane domain variants that have a chaperone-like function on MOR-1 protein stability. Our studies delineate the role of this SNP as a modifier of OPRM1 alternative splicing via hnRNPH interactions, and suggest a functional link between an SNP-containing splicing modifier and the severity of heroin addiction.


Assuntos
Dependência de Heroína/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Íntrons , Polimorfismo de Nucleotídeo Único , Splicing de RNA , Receptores Opioides mu/genética , Alelos , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Haplótipos , Dependência de Heroína/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Humanos , Desequilíbrio de Ligação , Masculino , Receptores Opioides mu/metabolismo , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa