Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vet World ; 10(6): 650-654, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28717317

RESUMO

AIM: This study was conducted to evaluate the impact of summer and winter season on physiological, biochemical, hormonal, and antioxidant parameters in Indigenous sheep. MATERIALS AND METHODS: The research was carried out during summer and winter season. 8 adult apparently healthy female sheep (aged 2-4 years) of similar physiological status were selected. Daily ambient temperature and relative humidity were recorded to calculate the temperature-humidity index (THI). The THI value of summer and winter season were 82.55 and 59.36, respectively, which indicate extreme hot condition during summer season and extreme cold condition during winter season. Physiological parameters were recorded daily during the experimental periods. Blood samples were collected at weekly interval and analyzed for biochemical, hormonal, and antioxidant parameters. The results were analyzed using completely randomized design. RESULTS: From data obtained in this study, we found that higher THI during summer have significant effect over various physiological, biochemical, hormonal, and enzymatic indices of indigenous sheep. The physiological response such as rectal temperature, respiration rate (RR), pulse rate (PR), and skin temperature (ST) was increased significantly. We also found a significant increase in some biochemical parameters such as blood urea nitrogen (BUN), uric acid, creatinine (Cr), alanine transaminase (ALT), aspartate transaminase (AST), sodium (Na), and potassium (K). The level of cortisol hormone and superoxide dismutase (SOD), glutathione peroxidase (GPx), and lipid peroxidase (LPO) antioxidants increased significantly during summer. Whereas, some parameters such as glucose, cholesterol, calcium (Ca), inorganic phosphorus (IP), triiodothyronine (T3), and thyroxine (T4) were decreased significantly during summer season. CONCLUSION: It was concluded that the THI is a sensitive indicator of heat stress and is impacted by ambient temperature more than the relative humidity in Indigenous sheep. Higher THI is associated with significant increase in RT, RR, PR, ST, BUN, uric acid, Cr, ALT, AST, Na, K, cortisol, SOD, GPx, and LPO and with a significant decrease in glucose, cholesterol, Ca, IP, T3 and T4.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa