Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(7): 3764-3789, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37227789

RESUMO

Glioblastoma (GBM) is an aggressive malignant type of brain tumor. Targeting one single intracellular pathway might not alleviate the disease, rather it activates the other molecular pathways that lead to the worsening of the disease condition. Therefore, in this study, we attempted to target both isocitrate dehydrogenase 1 (IDH1) and IDH2, which are one of the most commonly mutated proteins in GBM and other cancer types. Here, standard precision and extra precision docking, IFD, MM-GBSA, QikProp, and molecular dynamics (MD) simulation were performed to identify the potential dual inhibitor for IDH1 and IDH2 from the enamine database containing 59,161 ligands. Upon docking the ligands with IDH1 (PDB: 6VEI) and IDH2 (PDB: 6VFZ), the top eight ligands were selected, based on the XP Glide score. These ligands produced favourable MMGBSA scores and ADME characteristics. Finally, the top four ligands 12953, 44825, 51295, and 53210 were subjected to MD analysis. Interestingly, 53210 showed maximum interaction with Gln 277 for 99% in IDH1 and Gln 316 for 100% in IDH2, which are the crucial amino acids for the inhibitory function of IDH1 and IDH2 to target GBM. Therefore, the present study attempts to identify the novel molecules which could possess a pan-inhibitory action on both IDH1 and IDH that could be crucial in the management of GBM. Yet further evaluation involving in vitro and in vivo studies is warranted to support the data in our current study.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Mutação , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Encefálicas/tratamento farmacológico
2.
Transl Oncol ; 46: 102023, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852276

RESUMO

Medulloblastoma is a type of brain cancer that primarily affects children. While chemotherapy has been shown to be effective in treating medulloblastoma, the development of chemotherapy resistance remains a challenge. One potential therapeutic approach is to selectively inhibit the inducible transcription factor called STAT3, which is known to play a crucial role in the survival and growth of tumor cells. The activation of STAT3 has been linked to the growth and progression of various cancers, including medulloblastoma. Inhibition of STAT3 has been shown to sensitize medulloblastoma cells to chemotherapy, leading to improved treatment outcomes. Different approaches to STAT3 inhibition have been developed, including small-molecule inhibitors and RNA interference. Preclinical studies have shown the efficacy of STAT3 inhibitors in medulloblastoma, and clinical trials are currently ongoing to evaluate their safety and effectiveness in patients with various solid tumors, including medulloblastoma. In addition, researchers are also exploring ways to optimize the use of STAT3 inhibitors in combination with chemotherapy and identify biomarkers that can predict treatment that will help to develop personalized treatment strategies. This review highlights the potential of selective inhibition of STAT3 as a novel approach for the treatment of medulloblastoma and suggests that further research into the development of STAT3 inhibitors could lead to improved outcomes for patients with aggressive cancer.

3.
Oncol Res ; 32(1): 73-94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188673

RESUMO

Exosomes, small tiny vesicle contains a large number of intracellular particles that employ to cause various diseases and prevent several pathological events as well in the human body. It is considered a "double-edged sword", and depending on its biological source, the action of exosomes varies under physiological conditions. Also, the isolation and characterization of the exosomes should be performed accurately and the methodology also will vary depending on the exosome source. Moreover, the uptake of exosomes from the recipients' cells is a vital and initial step for all the physiological actions. There are different mechanisms present in the exosomes' cellular uptake to deliver their cargo to acceptor cells. Once the exosomal uptake takes place, it releases the intracellular particles that leads to activate the physiological response. Even though exosomes have lavish functions, there are some challenges associated with every step of their preparation to bring potential therapeutic efficacy. So, overcoming the pitfalls would give a desired quantity of exosomes with high purity.


Assuntos
Exossomos , Neoplasias , Humanos
4.
J Neuroimmune Pharmacol ; 17(3-4): 398-408, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34843075

RESUMO

Injury to the peripheral nerve is traditionally referred to acquired nerve injury as they are the result of physical trauma due to laceration, stretch, crush and compression of nerves. However, peripheral nerve injury may not be completely limited to acquired physical trauma. Peripheral nerve injury equally implies clinical conditions like Guillain-Barré syndrome (GBS), Carpal tunnel syndrome, rheumatoid arthritis and diabetes. Physical trauma is commonly mono-neuropathic as it engages a single nerve and produces focal damage, while in the context of pathological conditions the damage is divergent involving a group of the nerve causing polyneuropathy. Damage to the peripheral nerve can cause a diverse range of manifestations from sensory impairment to loss of function with unpredictable recovery patterns. Presently no treatment option provides complete or functional recovery in nerve injury, as nerve cells are highly differentiated and inert to regeneration. However, the regenerative phenotypes in Schwann cells get expressed when a signalling cascade is triggered by neurotrophins. Neurotrophins are one of the promising biomolecules that are released naturally post-injury with the potential to exhibit better functional recovery. Pharmacological intervention modulating the expression of these neurotrophins such as brain-derived neurotrophic factor (BDNF) and pituitary adenylyl cyclase-activating peptide (PACAP) can prove to be a significant treatment option as endogenous compounds which may have remarkable innate advantage showing maximum 'biological relevance'.


Assuntos
Traumatismos dos Nervos Periféricos , Humanos , Traumatismos dos Nervos Periféricos/metabolismo , Regeneração Nervosa/fisiologia , Células de Schwann/metabolismo , Neurônios , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa