Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Proteome Res ; 22(12): 3866-3878, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37970754

RESUMO

Probiotics are live microorganisms that confer health benefits when administered in adequate amounts. They are used to promote gut health and alleviate various disorders. Recently, there has been an increasing interest in the potential effects of probiotics on human physiology. In the presented study, the effects of probiotic treatment on the metabolic profiles of human urine and serum using a nuclear magnetic resonance (NMR)-based metabonomic approach were investigated. Twenty-one healthy volunteers were enrolled in the study, and they received two different dosages of probiotics for 8 weeks. During the study, urine and serum samples were collected from volunteers before and during probiotic supplementation. The results showed that probiotics had a significant impact on the urinary and serum metabolic profiles without altering their phenotypes. This study demonstrated the effects of probiotics in terms of variations of metabolite levels resulting also from the different probiotic posology. Overall, the results suggest that probiotic administration may affect both urine and serum metabolomes, although more research is needed to understand the mechanisms and clinical implications of these effects. NMR-based metabonomic analysis of biofluids is a powerful tool for monitoring host-gut microflora dynamic interaction as well as for assessing the individual response to probiotic treatment.


Assuntos
Líquidos Corporais , Microbioma Gastrointestinal , Probióticos , Humanos , Metaboloma , Metabolômica
2.
Pediatr Res ; 93(7): 2005-2013, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36319696

RESUMO

BACKGROUND: Oral microbial therapy has been studied as an intervention for a range of gastrointestinal disorders. Though research suggests that microbial exposure may affect the gastrointestinal system, motility, and host immunity in a pediatric population, data have been inconsistent, with most prior studies being in neither a randomized nor placebo-controlled setting. The aim of this randomized, placebo-controlled study was to evaluate the efficacy of a synbiotic on increasing weekly bowel movements (WBMs) in constipated children. METHODS: Sixty-four children (3-17 years of age) were randomized to receive a synbiotic (n = 33) comprising mixed-chain length oligosaccharides and nine microbial strains, or placebo (n = 31) for 84 days. Stool microbiota was analyzed on samples collected at baseline and completion. The primary outcome was a change from baseline of WBMs in the treatment group compared to placebo. RESULTS: Treatment increased (p < 0.05) the number of WBMs in children with low baseline WBMs, despite broadly distinctive baseline microbiome signatures. Sequencing revealed that low baseline microbial richness in the treatment group significantly anticipated improvements in constipation (p = 0.00074). CONCLUSIONS: These findings suggest the potential for (i) multi-species-synbiotic interventions to improve digestive health in a pediatric population and (ii) bioinformatics-based methods to predict response to microbial interventions in children. IMPACT: Synbiotic microbial treatment improved the number of spontaneous weekly bowel movements in children compared to placebo. Intervention induced an increased abundance of bifidobacteria in children, compared to placebo. All administered probiotic species were enriched in the gut microbiome of the intervention group compared to placebo. Baseline microbial richness demonstrated potential as a predictive biomarker for response to intervention.


Assuntos
Probióticos , Simbióticos , Criança , Humanos , Lactente , Trato Gastrointestinal/microbiologia , Probióticos/uso terapêutico , Constipação Intestinal/terapia , Fezes/microbiologia , Método Duplo-Cego
3.
Medicina (Kaunas) ; 59(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38138183

RESUMO

The role of the skin-gut axis in atopic dermatitis (AD) remains a subject of debate, limiting non-pharmacological interventions such as probiotics and prebiotics. To improve understanding of their potential as a monotherapy for stable mild cases, we conducted a real-life, multicenter, retrospective observational study in Italy. We administered three selected bacteria (Bifidobacterium animalis subsp. lactis BS01, Lactiplantibacillus plantarum LP14, and Lacticaseibacillus rhamnosus LR05) orally to patients with mild atopic dermatitis without a placebo control group, following up for 12 weeks. Clinical assessments using the Scoring Atopic Dermatitis (SCORAD), Eczema Area and Severity Index (EASI), and Three-Item Severity (TIS) score were conducted on 144 enrolled patients (average age: 25.1 ± 17.6 years). Notably, both pruritus and AD-related lesions (erythema, edema/papules, excoriation) exhibited significant clinical and statistical improvement (p < 0.001) after 12 weeks of exclusive probiotic and prebiotic use. These preliminary results suggest a potential link between the skin-gut microbiome and support the rationale for using specific probiotics and prebiotics in mild AD, even for maintenance, to reduce flares and dysbiosis.


Assuntos
Dermatite Atópica , Lacticaseibacillus rhamnosus , Probióticos , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Prebióticos , Dermatite Atópica/terapia , Estudos Retrospectivos , Probióticos/uso terapêutico , Índice de Gravidade de Doença
4.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408849

RESUMO

Oral lichen planus (OLP) is a T cell-mediated chronic inflammatory disorder with multifactorial aetiology and malignant transformation potential. Despite the treatments so far identified, new tailored and safe specific measures are needed. Recently, human microbiota imbalance has been linked to several immune-mediated diseases, opening new therapeutic perspectives for probiotics; besides their ability to directly interact with the host microbiota, they also display a strain-specific immune-modulatory effect. Thus, this non-systematic review aims to elucidate the molecular pathways underlying probiotic activity, mainly those of Lactobacilli and Bifidobacteria and their metabolites in OLP pathogenesis and malignant transformation, focusing on the most recent in vitro and in vivo research evidence. Findings related to their activity in other immune-mediated diseases are here included, suggesting a probiotic translational use in OLP. Probiotics show immune-modulatory and microbiota-balancing activities; they protect the host from pathogens, hamper an excessive effector T cell response, reduce nuclear factor-kappa B (NF-kB) signalling and basal keratinocytes abnormal apoptosis, shifting the mucosal response towards the production of anti-inflammatory cytokines, thus preventing uncontrolled damage. Therefore, probiotics could be a highly encouraging prevention and immunotherapeutic approach for a safer and more sustainable OLP management.


Assuntos
Líquen Plano Bucal , Probióticos , Adjuvantes Imunológicos/uso terapêutico , Humanos , Fatores Imunológicos/metabolismo , Fatores Imunológicos/uso terapêutico , Queratinócitos/metabolismo , Líquen Plano Bucal/tratamento farmacológico , Líquen Plano Bucal/metabolismo , NF-kappa B/metabolismo , Probióticos/uso terapêutico
5.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555802

RESUMO

The human oral pathobionts Aggregatibacter actinomycetemcomitans, Streptococcus mitis and Streptococcus mutans, in dysbiosis-promoting conditions, lead to oral infections, which also represent a threat to human systemic health. This scenario may be worsened by antibiotic misuse, which favours multi-drug resistance, making the research on pathogen containment strategies more than crucial. Therefore, we aimed to in vitro select the most promising probiotic strains against oral pathogen growth, viability, biofilm formation, and co-aggregation capacity, employing both the viable probiotics and their cell-free supernatants (CFSs). Interestingly, we also assessed probiotic efficacy against the three-pathogen co-culture, mimicking an environment similar to that in vivo. Overall, the results showed that Lactobacillus CFSs performed better than the Bifidobacterium, highlighting Limosilactobacillus reuteri LRE11, Lacticaseibacillus rhamnosus LR04, Lacticaseibacillus casei LC04, and Limosilactobacillus fermentum LF26 as the most effective strains, opening the chance to deeper investigation of their action and CFS composition. Altogether, the methodologies presented in this study can be used for probiotic efficacy screenings, in order to better focus the research on a viable probiotic, or on its postbiotics, suitable in case of infections.


Assuntos
Lacticaseibacillus casei , Probióticos , Humanos , Lactobacillus , Bifidobacterium , Streptococcus mutans , Probióticos/uso terapêutico
6.
Eur J Pediatr ; 180(4): 1293-1298, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33226501

RESUMO

Intestinal dysbiosis (changes in the gut commensal microbiome) is related to several ophthalmic diseases. The aim of this study was to verify whether oral specific probiotics can alter the clinical course of chalaziosis and its recurrence. A prospective comparative pilot study involving 26 children suffering from chalaziosis was conducted. Children were randomly divided into two groups. The first group received medical treatment (lid hygiene, warm compression and dexamethasone/tobramycin ointment for at least 20 days), and the second group received medical treatment plus a daily supplementation of oral probiotics (≥ 1 × 10^9 live cells of Streptococcus thermophilus ST10 (DSM 25246), ≥ 1 × 10^9 live cells of Lactococcus lactis LCC02 (DSM 29536) and ≥ 1 × 10^9 live cells of Lactobacillus delbrueckii subsp. bulgaricus (DSM 16606) with maltodextrin as the bulking agent (Probiotical S.p.A., Novara, Italy). All patients were evaluated at 2-week intervals for 3 months. If the lesion had not disappeared or decreased in size to 1 mm or less in diameter at the time of subsequent visits, the same procedure was repeated for another 3-month cycle. There was a significant difference in the time taken for complete resolution of the chalazion between the two groups in favour of the children receiving the probiotics. The treatment was not associated with any significant complications in either group. Trial registration: The trial was registered at clinical trials.gov under NCT04322500 on 25/03/2020 ("retrospectively registered").Conclusions: Modification of the intestinal microbiome with specific probiotics can alter the clinical course of chalaziosis in children by re-establishing intestinal and immune homeostasis. Probiotic supplementation can increase the effectiveness of traditional therapies by prompting the complete resolution of chalaziosis in a shorter amount of time, in an easy and feasible way. What is Known: • The intestinal microbiome plays a crucial role in several inflammatory diseases of the eye and is considered a therapeutic target. • Probiotics play a role in the prevention and treatment of different conditions in children. What is New: • In children probiotic supplementation is safe and effective. • Probiotic supplementation reduced the time required for complete resolution of the chalazion.


Assuntos
Microbioma Gastrointestinal , Probióticos , Criança , Humanos , Itália , Projetos Piloto , Probióticos/uso terapêutico , Estudos Prospectivos
7.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502031

RESUMO

The human microbiome is a rich factory for metabolite production and emerging data has led to the concept that orally administered microbial strains can synthesize metabolites with neuroactive potential. Recent research from ex vivo and murine models suggests translational potential for microbes to regulate anxiety and depression through the gut-brain axis. However, so far, less emphasis has been placed on the selection of specific microbial strains known to produce the required key metabolites and the formulation in which microbial compositions are delivered to the gut. Here, we describe a double-capsule technology to deliver high numbers of metabolically active cells derived from the 24-strain probiotic product SH-DS01 to the gastrointestinal tract, including the small intestine, where immune responses and adsorption of metabolites into the bloodstream occur. Based on its genome sequence, Limosilactobacillus reuteri SD-LRE2-IT was predicted to have the genetic capacity to de novo produce a specific metabolite of interest to brain health, vitamin B12, which could be confirmed in vitro. Taken together, our data conceptualizes the importance of rationally defined microbial strain characterization based on genomics and metabolomics data, combined with carefully designed capsule technology for delivery of live cells and concomitant functionality in and beyond the gut ecosystem.


Assuntos
Microbioma Gastrointestinal , Limosilactobacillus reuteri/metabolismo , Probióticos/administração & dosagem , Vitamina B 12/biossíntese , Genômica , Humanos , Análise de Sequência de DNA
8.
BMC Med ; 18(1): 153, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32546239

RESUMO

BACKGROUND: A connection between amyotrophic lateral sclerosis (ALS) and altered gut microbiota composition has previously been reported in animal models. This work is the first prospective longitudinal study addressing the microbiota composition in ALS patients and the impact of a probiotic supplementation on the gut microbiota and disease progression. METHODS: Fifty patients and 50 matched controls were enrolled. The microbial profile of stool samples from patients and controls was analyzed via PCR-Denaturing Gradient Gel Electrophoresis, and the main microbial groups quantified via qPCR. The whole microbiota was then analyzed via next generation sequencing after amplification of the V3-V4 region of 16S rDNA. Patients were then randomized to receive probiotic treatment or placebo and followed up for 6 months with ALSFRS-R, BMI, and FVC%. RESULTS: The results demonstrate that the gut microbiota of ALS patients is characterized by some differences with respect to controls, regardless of the disability degree. Moreover, the gut microbiota composition changes during the course of the disease as demonstrated by the significant decrease in the number of observed operational taxonomic unit during the follow-up. Interestingly, an unbalance between potentially protective microbial groups, such as Bacteroidetes, and other with potential neurotoxic or pro-inflammatory activity, such as Cyanobacteria, has been shown. The 6-month probiotic treatment influenced the gut microbial composition; however, it did not bring the biodiversity of intestinal microbiota of patients closer to that of control subjects and no influence on the progression of the disease measured by ALSFRS-R was demonstrated. CONCLUSIONS: Our study poses the bases for larger clinical studies to characterize the microbiota changes as a novel ALS biomarker and to test new microbial strategy to ameliorate the health status of the gut. TRIAL REGISTRATION: CE 107/14, approved by the Ethics Committee of the "Maggiore della Carità" University Hospital, Italy.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Adolescente , Adulto , Idoso , Animais , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
9.
J Clin Gastroenterol ; 52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017: S57-S61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29864069

RESUMO

GOALS: The aim of this research was to evaluate whether micronized cells (MCs) from selected biotherapeutic bacteria have the ability to effectively modulate the polarization of monocyte/macrophage subpopulations to advantageously provide a first line of defense against infections. BACKGROUND: Inflammation is a reaction of the host to viral and bacterial infections with the physiological purpose of restoring tissue homeostasis. However, uncontrolled or unresolved inflammation can lead to tissue damage, giving rise to a plethora of chronic inflammatory diseases. The monocytes/macrophages play a key role in the initiation and resolution of inflammation through different activation programs. STUDY: MCs were obtained from Bifidobacterium lactis BS01 strain using a Bioimmunizer extraction protocol. Monocytes were stimulated with the probiotic strain and/or MCs (10 mg/mL) for 24 hours and 5 days. Monocyte/macrophage differentiation was evaluated by cytometry analysis of surface markers and the activity of the 2 subpopulations on oxidative stress was assessed in an in vitro oxidative stress model with a spectrophotometric test. RESULTS: The MCs have been shown to modulate considerably the 2 subpopulations of human monocytes/macrophages, both the "patrolling subpopulation" and the "inflammatory subpopulation," thus highlighting a strong immunostimulatory effect. In addition, MCs are able to mitigate significantly the oxidative stress induced by homocysteine in an in vitro model. CONCLUSIONS: Our findings suggest that MCs derived from the biotherapeutic strain BS01 could represent a possible therapy aimed to effectively prevent and/or cure viral, bacterial, fungal, or protozoal diseases, as well as prevent and/or treat inflammatory processes triggered by external pathogenic agents.


Assuntos
Bifidobacterium/citologia , Polaridade Celular/fisiologia , Macrófagos/microbiologia , Monócitos/microbiologia , Probióticos/farmacologia , Diferenciação Celular/fisiologia , Humanos , Leucócitos Mononucleares , Macrófagos/fisiologia , Monócitos/fisiologia , Estresse Oxidativo
10.
J Clin Gastroenterol ; 52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017: S46-S49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29782463

RESUMO

Human beings harbor clusters of bacteria in different parts of the body, such as the surface or the deep layers of the skin, the mouth, the lungs, the intestine, the vagina, and all the surfaces exposed to the outer world. The majority of microbes resides in the gut, have a weighty influence on human physiology and nutrition and are vital for human life. There is growing evidence showing that the gut microbiota plays important roles in the maturation of the immune system and the protection against some infectious agents. In addition, there are several well-known effects of exercise on gut physiology. Exercise volume and intensity have been shown to exert an influence on gastrointestinal health status. An estimated 20% to 60% of athletes suffer from stress caused by excessive exercise and inadequate recovery. Supplementing the diet with prebiotics and/or probiotics able to improve the metabolic, immune, and barrier function can be a therapy for athletes. A recent study showed the effects of coadministration of 2 probiotic strains (Bifidobacterium breve BR03 and Streptococcus thermophilus FP4) on measures of skeletal muscle performance, damage, tension, and inflammation following a bout of strenuous exercise. Probiotic supplementation likely enhanced isometric average peak torque production from 24 to 72 hours into the recovery period following exercise. The active formulation also moderately increased resting arm angle at 24 and 48 hours following exercise. In conclusion, selected beneficial bacteria could positively affect athletes undergoing periods of intense training and may assist in the performance recovery.


Assuntos
Desempenho Atlético/fisiologia , Microbiota/fisiologia , Probióticos/farmacologia , Esportes/fisiologia , Bifidobacterium breve , Humanos , Streptococcus thermophilus
11.
J Clin Gastroenterol ; 52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017: S78-S81, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29782471

RESUMO

GOALS: The aim of this research was to assess the antibacterial activity of Lactobacillus salivarius LS03 (DSM 22776) against Propionibacterium acnes and its anti-inflammatory properties by inhibiting P. acnes-induced interleukin-8 (IL-8) release. BACKGROUND: Acne is the most common skin disease, causing significant psychosocial problems for those afflicted. Currently available agents for acne treatment, such as oral antibiotics, have limited use. Thus, development of novel agents to treat this disease is needed. In the generation of inflammatory lesions, proliferation of P. acnes in the obstructed follicles is critical. The administration of beneficial microorganisms represents a promising approach for treating several skin alterations and can have many favorable effects. STUDY: For the inhibition assay, P. acnes was spread on Propionibacter Isolation Agar Base plates, and LS03-soaked disks were placed directly on the agar surface. Peripheral blood mononuclear cells, isolated from healthy volunteers, were preincubated with phytohemagglutinin 1 µg/mL for 1 hour and stimulated with the probiotic strains for 24 hours to simulate an in vitro IL-8 release model. The IL-8 concentration in the supernatants was analyzed in duplicate using ELISA Kit. RESULTS: L. salivarius LS03 exerted a significant inhibitory capacity against the target pathogen strain. This antagonistic activity was primarily ascribable to the feature of LS03 strain of secreting active bacteriocins against P. acnes. Concerning the IL-8 analysis, 3 different L. salivarius strains were able to inhibit the release of this chemokine by 10% to 25%. CONCLUSIONS: L. salivarius LS03 probiotic strain could be an alternative treatment to antibiotic/anti-inflammatory therapy in subjects presenting acne vulgaris.


Assuntos
Acne Vulgar/terapia , Interleucina-8/metabolismo , Ligilactobacillus salivarius , Probióticos/farmacologia , Propionibacterium acnes/metabolismo , Acne Vulgar/microbiologia , Bacteriocinas/metabolismo , Humanos , Leucócitos Mononucleares
12.
J Clin Gastroenterol ; 52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017: S41-S45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29762266

RESUMO

GOALS: The purpose of this trial was to verify that the analytical method ISO 19344:2015 (E)-IDF 232:2015 (E) is valid and reliable for quantifying the concentration of the probiotic Lactobacillus rhamnosus GG (ATCC 53103) in a finished product formulation. BACKGROUND: Flow cytometry assay is emerging as an alternative rapid method for microbial detection, enumeration, and population profiling. The use of flow cytometry not only permits the determination of viable cell counts but also allows for enumeration of damaged and dead cell subpopulations. Results are expressed as TFU (Total Fluorescent Units) and AFU (Active Fluorescent Units). In December 2015, the International Standard ISO 19344-IDF 232 "Milk and milk products-Starter cultures, probiotics and fermented products-Quantification of lactic acid bacteria by flow cytometry" was published. This particular ISO can be applied universally and regardless of the species of interest. STUDY: Analytical method validation was conducted on 3 different industrial batches of L. rhamnosus GG according to USP39<1225>/ICH Q2R1 in term of: accuracy, precision (repeatability), intermediate precision (ruggedness), specificity, limit of quantification, linearity, range, robustness. RESULTS: The data obtained on the 3 batches of finished product have significantly demonstrated the validity and robustness of the cytofluorimetric analysis. CONCLUSIONS: On the basis of the results obtained, the ISO 19344:2015 (E)-IDF 232:2015 (E) "Quantification of lactic acid bacteria by flow cytometry" can be used for the enumeration of L. rhamnosus GG in a finished product formulation.


Assuntos
Carga Bacteriana/métodos , Citometria de Fluxo/métodos , Microbiologia de Alimentos/métodos , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Probióticos/análise , Animais , Humanos , Leite/microbiologia , Reprodutibilidade dos Testes
13.
J Clin Gastroenterol ; 52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017: S68-S70, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29782468

RESUMO

BACKGROUND: Recent preclinical studies suggest that dysfunction of gastrointestinal tract may play a role in amyotrophic lateral sclerosis (ALS) pathogenesis through a modification of the gut microbiota brain axis. Our study is the first focused on microbiota analysis in ALS patients. AIM: Our aim was to study the main human gut microbial groups and the overall microbial diversity in ALS and healthy subjects. Moreover we have examined the influence of a treatment with a specific bacteriotherapy composed of Lactobacillus strains (Lactobacillus fermentum, Lactobacillus delbrueckii, Lactobacillus plantarum, Lactobacillus salivarius) acting on the gastrointestinal barrier. METHODS: We enrolled 50 ALS patients and 50 healthy controls, matched for sex, age, and origin. Fecal samples were used for total genomic DNA extraction. Enterobacteria, Bifidobacterium spp., Lactobacillus spp., Clostridium sensu stricto, Escherichia coli and yeast were quantified using quantitative polymerase chain reaction approach. Denaturing gradient gel electrophoresis analyses were performed to investigate total eubacteria and yeasts populations. Patients were randomized to double-blind treatment either with microorganisms or placebo for 6 months and monitored for clinical progression and microbiota composition. RESULTS: The comparison between ALS subjects and healthy group revealed a variation in the intestinal microbial composition with a higher abundance of E. coli and enterobacteria and a low abundance of total yeast in patients. Polymerase chain reaction denaturing gradient gel electrophoresis analysis showed a cluster distinction between the bacterial profiles of ALS patients and the healthy subjects. The complexity of the profiles in both cases may indicate that a real dysbiosis status is not evident in the ALS patients although differences between healthy and patients exist. The effects of the progression of the disease and of the bacteriotherapy on the bacterial and yeast populations are currently in progress. CONCLUSIONS: Our preliminary results confirm that there is a difference in the microbiota profile in ALS patients.


Assuntos
Esclerose Lateral Amiotrófica/microbiologia , Microbioma Gastrointestinal , Probióticos/administração & dosagem , Adulto , Esclerose Lateral Amiotrófica/terapia , Bifidobacterium/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Método Duplo-Cego , Enterobacteriaceae/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Fezes/microbiologia , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Lactobacillus , Masculino , Fenótipo , Leveduras/crescimento & desenvolvimento
15.
J Clin Gastroenterol ; 50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015: S120-S123, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27741153

RESUMO

BACKGROUND: Diarrhea accounts for 9% of the mortality among children under 5 years of age worldwide, and it is significantly associated with malnutrition. Each year, diarrhea kills around 760,000 children under 5 years of age and most of these are in sub-Saharan Africa.In Uganda, the infant mortality rate of 58 per 1000 is unacceptably high, and the major contributors include malnutrition, diarrhea, pneumonia, malaria, prematurity, sepsis, and newborn illnesses.There is an urgent need for intervention to prevent and control diarrheal diseases. STUDY DESIGN: Our open-label, randomized controlled study has the primary endpoint of reducing diarrhea and infectious diseases (number of episodes/severity) and the secondary endpoint of decreasing infant mortality. The trial is currently conducted in Luzira, a suburb of Kampala, the capital of Uganda, and in Gulu and Lira, in the north of Uganda.The study is projected to enroll 4000 babies (control=2000 and treatment=2000) who will be followed till 1 year of life. As controls, 2000 babies of the same community are planned to be considered.The probiotic product selected for the trial is composed of 3 designated microorganisms, namely Bifidobacterium breve BR03 (DSM 16604), B. breve B632 (DSM 24706), and Lactobacillus delbrueckii subsp. delbrueckii LDD01 (DSM 22106). The concentration of the 3 bacteria is 10 viable cells/strain/daily dose (5 drops). PERSPECTIVES: For a total sample of 4000 babies, the study has an 80% power at a 5% significance level.


Assuntos
Diarreia/mortalidade , Diarreia/prevenção & controle , Mortalidade Infantil , Probióticos/uso terapêutico , África Subsaariana , Bifidobacterium breve , Pré-Escolar , Protocolos Clínicos , Diarreia/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Lactobacillus delbrueckii , Masculino , Projetos Piloto , Resultado do Tratamento , Uganda
16.
J Clin Gastroenterol ; 50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015: S126-S130, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27741155

RESUMO

GOALS: To investigate the modulation of human cytokines by Bifidobacterium longum strains isolated from Centenarians. In particular, we measured the production of interleukin (IL)-12p70, interferon-γ, IL-17A, and IL-4 from human peripheral blood mononuclear cells after stimulation with live bacteria. BACKGROUND: Probiotics may inhibit pathogens and modulate the immune system, bringing a beneficial effect on human health. Among the probiotic strains, bifidobacteria play a key role in the maturation of the host's immune system. At present, only a few comparative data are available on the effects of bifidobacteria associations on cytokine production. STUDY: Peripheral blood mononuclear cells were isolated, cultured, and stimulated (ratio 1:1) with B. longum DLBL07, B. longum DLBL08, B. longum DLBL09, B. longum DLBL10, or B. longum DLBL11, either alone or in association. Cytokine production was determined by an enzyme-linked immunosorbent assay. RESULTS: Both the B. longum DLBL mixture and the individual B. longum DLBL strains induced similar levels of IL-4, interferon-γ, and IL-17A. Under all conditions tested, no IL-12p70 release was detected. CONCLUSIONS: The fact that B. longum strains were obtained from Centenarians suggests a perfect homeostasis between this specific species and the host. Moreover all the B. longum strains from Centenarians used in our study share some biological similarities.


Assuntos
Bifidobacterium longum/fisiologia , Citocinas/biossíntese , Microbioma Gastrointestinal/fisiologia , Homeostase/fisiologia , Leucócitos Mononucleares/fisiologia , Idoso de 80 Anos ou mais , Ensaio de Imunoadsorção Enzimática , Humanos , Interferon gama/biossíntese , Interleucina-12/biossíntese , Interleucina-17/biossíntese , Interleucina-4/biossíntese , Leucócitos Mononucleares/microbiologia
17.
J Clin Gastroenterol ; 50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015: S168-S170, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27741167

RESUMO

GOALS: This study was undertaken to demonstrate the ability of Lactobacillus fermentum LF5 (DSM 32277) to inhibit in vitro different Candida species and Gardnerella vaginalis to weigh its potential effectiveness even in mixed vaginal infections. BACKGROUND: A wide female population is suffering from various vulvovaginal infections. These diseases are often associated with a decrease in the concentration of Lactobacilli in the vagina. Mixed vaginal infections represent >20% of women with vulvovaginal infection. STUDY: LF5 strain was cocultured in De Man, Rogosa and Sharpe with Candida according to a 1:100 ratio in favor of the yeast. Each culture was sampled after 24 hours of incubation for the selective enumeration of the yeasts performed on yeast extract glucose chloramphenicol agar medium.The growth of Gardnerella alone (positive control) and in the presence of different concentrations of neutralized supernatants of L. fermentum LF5 ranging from 5% to 20% was quantified by means of optical density at 600 nm (OD600). RESULTS: L. fermentum LF5 demonstrated the ability to inhibit significantly the growth of the 5 species of Candida by at least 4 logarithms.Furthermore, L. fermentum LF5 showed a significant activity after both 24 and 48 hours (46% and 82% with 20% of neutralized supernatant, respectively). A significant dose-dependent growth inhibition was recorded in particular after 48 hours of incubation, even achieving a 80% inhibition of G. vaginalis growth. CONCLUSIONS: The biotherapeutic LF5 could be the only documented strain effective in mixed forms. For this purpose, a human clinical trial is in progress.


Assuntos
Candida/crescimento & desenvolvimento , Gardnerella vaginalis/crescimento & desenvolvimento , Limosilactobacillus fermentum , Probióticos/uso terapêutico , Vaginite/terapia , Técnicas de Cocultura , Feminino , Humanos , Vaginite/microbiologia
18.
J Clin Gastroenterol ; 50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015: S153-S156, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27741162

RESUMO

GOALS: The aim of the study was to unequivocally demonstrate the nontransmissibility of the genes mediating the resistance of the strain Bifidobacterium longum W11 (LMG P-21586) to rifaximin. BACKGROUND: Most antibiotic treatments can induce unfavorable side effects such as antibiotic-associated diarrhea, which is largely attributable to the disruption of the intestinal microbiota. The parallel intake of probiotic bacteria might reduce these events, even if with generally very poor results. In this regard, the use of antibiotic-resistant beneficial bacteria could represent a worthy strategy. STUDY: Rifaximin was tested in parallel with rifampicin, rifapentine, and rifabutin, all rifamycin derivates, using 5 different concentrations. Susceptibility tests were performed by the disc diffusion method of Kirby-Bauer, and inhibition zones were measured after incubation at 37°C. B. longum BL03 was used as comparison. The B. longum W11 genome was sequenced on Illumina MiSeq with a 250 PE reads module. After mapping the reads with the reference bacterial genome, the alignment data were processed using FreeBayes software. RESULTS: B. longum BL03 was inhibited by all antibiotics even at the lowest concentration. In contrast, the W11 strain was inhibited by rifampicin, rifabutin, and rifaximin only at the highest concentration (512 µg/mL). The genomic analysis showed a mutation into the chromosomal DNA. No transposable elements were found, and the genetic locus was not flanked by close mobile genetic elements. CONCLUSIONS: B. longum W11 could be used in combined therapy with rifaximin, thus opening new focused frontiers in the probiotic era while preserving the necessary safety of use for consumers.


Assuntos
Antibacterianos/farmacologia , Bifidobacterium longum/efeitos dos fármacos , Probióticos/uso terapêutico , Rifamicinas/farmacologia , Bifidobacterium longum/genética , DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/genética , Relação Dose-Resposta a Droga , Genoma Bacteriano/efeitos dos fármacos , Genoma Bacteriano/genética , Humanos , Mutação , Rifabutina/farmacologia , Rifampina/análogos & derivados , Rifampina/farmacologia , Rifaximina
19.
J Clin Gastroenterol ; 50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015: S171-S174, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27741168

RESUMO

GOALS: To investigate the possible use of Lactobacillus strains in the prophylaxis and/or adjuvant therapy of acute vulvovaginal candidiasis and other vaginal infections sustained by Candida yeasts. BACKGROUND: The incidence of Candida infections has substantially increased in recent years. Treatment of vaginal infections with lactobacilli has a long tradition, starting with Döderlein's description of the vaginal microbiota. MATERIALS AND METHODS: We assessed the activity of serially diluted fluconazole and miconazole (from 3 ng/mL to 1 mg/mL) against Candida strains. Serial dilutions of the azoles were prepared in Sabouraud Dextrose Broth in the presence of Candida strains. Broths were incubated under aerobic condition at 30°C, and the optical density was measured at 560 nm. Minimum inhibitory concentration was defined as the lowest concentration of the antibiotic that completely inhibited visible growth. RESULTS: An evident resistance to the azoles used was recorded for all species of Candida, with the exception of Candida parapsilosis. For this species, a minimum inhibitory concentration ≤1 mg/mL was obtained, thus confirming the slight sensitivity to fluconazole and miconazole.All Lactobacillus strains tested, namely LF5, LF09, LF10, and LF11, have the ability to significantly inhibit the growth of the five species of Candida of at least 4 logarithms. Furthermore, the best result obtained with miconazole on C. parapsilosis is still 2 logarithms lower. CONCLUSIONS: The use of beneficial bacteria, especially lactobacilli, could be regarded as a good alternative for the prevention and treatment of Candida infections.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida/crescimento & desenvolvimento , Candidíase Vulvovaginal/terapia , Limosilactobacillus fermentum , Probióticos/uso terapêutico , Candidíase Vulvovaginal/microbiologia , Candidíase Vulvovaginal/prevenção & controle , Feminino , Fluconazol/farmacologia , Humanos , Miconazol/farmacologia , Testes de Sensibilidade Microbiana , Vagina/efeitos dos fármacos , Vagina/microbiologia
20.
J Clin Gastroenterol ; 48 Suppl 1: S91-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25291139

RESUMO

BACKGROUND: Oxalate is the salt-forming ion of oxalic acid and can generate oxalate salts combining with various cations, such as sodium, potassium, magnesium, and calcium. Approximately 75% of all kidney stones are composed primarily of calcium oxalate (CaOx) and hyperoxaluria, a condition involving high urinary oxalate concentration, is considered a primary risk factor for kidney stone formation, known as nephrolithiasis. Current therapeutic strategies often fail in their compliance or effectiveness, and CaOx stone recurrence is still common. After an initial stone, there is a 50% chance of forming a second stone within 7 years if the condition is left untreated. The potential therapeutic application of some probiotics, mainly lactobacilli and bifidobacteria, in reducing hyperoxaluria in vivo through intestinal oxalate degrading activity is compelling and initial reports are promising. This study was undertaken to screen different Lactobacillus and Bifidobacterium strains for their capacity to degrade oxalate in vitro using reverse-phase high-performance liquid chromatography (HPLC). METHODS: The oxalate-degrading activity of 13 lactobacilli and 5 bifidobacteria was tested using a novel HPLC method after growth in a broth culture added with 10 mM ammonium oxalate. Experiments were repeated 3 times. Oxalobacter formigenes (DSM 4420) was used as positive reference to validate HPLC oxalate-degrading capability assays. RESULTS: Lactobacillus strains were more efficient than bifidobacteria in degrading oxalates. L. paracasei LPC09 (DSM 24243) gave the best result, as 68.5% of ammonium oxalate was converted at the end of incubation, whereas the following best converters belong to the L. gasseri and L. acidophilus species. The relatively low conversion rate observed for most bifidobacteria can probably be attributed to intrinsic oxalate toxicity toward this genus. CONCLUSIONS: Humans lack the enzymes needed to directly metabolise oxalate, and this potentially toxic compound is, therefore, managed using alternative pathways. As oxalate-degrading bacteria are present in the endogenous microbiota of the human intestine, although with significant individual differences, it is possible to hypothesise that the administration of selected oxalate-degrading probiotics could be an alternative and innovative approach to reducing the intestinal absorption of oxalate and the resulting urinary excretion.


Assuntos
Bifidobacterium/metabolismo , Intestinos/microbiologia , Lactobacillus/metabolismo , Litíase/terapia , Ácido Oxálico/metabolismo , Probióticos/uso terapêutico , Bifidobacterium/classificação , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Humanos , Cinética , Lactobacillus/classificação , Litíase/diagnóstico , Litíase/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa