Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Exp Zool B Mol Dev Evol ; 336(8): 606-619, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32649025

RESUMO

Land colonization was a major event in the history of life. Among animals, insects exerted a staggering terrestrialization success, due to traits usually associated with postembryonic life stages, while the egg stage has been largely overlooked in comparative studies. In many insects, after blastoderm differentiation, the extraembryonic serosal tissue wraps the embryo and synthesizes the serosal cuticle, an extracellular matrix that lies beneath the eggshell and protects the egg against water loss. In contrast, in noninsect hexapods such as springtails (Collembola) the early blastodermal cells synthesize a blastodermal cuticle. Here, we investigate the relationship between blastodermal cuticle formation and egg resistance to desiccation in the springtails Orchesella cincta and Folsomia candida, two species with different oviposition environments and developmental rates. The blastodermal cuticle becomes externally visible in O. cincta and F. candida at 22% and 29% of embryogenesis, respectively. To contextualize, we describe the stages of springtail embryogenesis, exemplified by F. candida. Our physiological assays then showed that blastodermal cuticle formation coincides with an increase in egg viability in a dry environment, significantly contributing to hatching success. However, protection differs between species: while O. cincta eggs survive at least 2 hr outside a humid environment, the survival period recorded for F. candida eggs is only 15 min, which correlates with this species' requirement for humid microhabitats. We suggest that the formation of this cuticle protects the eggs, constituting an ancestral trait among hexapods that predated and facilitated the process of terrestrialization that occurred during insect evolution.


Assuntos
Artrópodes , Blastoderma , Óvulo , Animais , Dessecação , Feminino , Oviposição , Óvulo/fisiologia
2.
BMC Biol ; 18(1): 142, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33070780

RESUMO

BACKGROUND: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.


Assuntos
Genoma de Inseto , Características de História de Vida , Tisanópteros/fisiologia , Transcriptoma , Animais , Produtos Agrícolas , Comportamento Alimentar , Cadeia Alimentar , Imunidade Inata/genética , Percepção , Filogenia , Reprodução/genética , Tisanópteros/genética , Tisanópteros/imunologia
4.
BMC Genomics ; 21(1): 47, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937263

RESUMO

BACKGROUND: The red flour beetle Tribolium castaneum has emerged as an important model organism for the study of gene function in development and physiology, for ecological and evolutionary genomics, for pest control and a plethora of other topics. RNA interference (RNAi), transgenesis and genome editing are well established and the resources for genome-wide RNAi screening have become available in this model. All these techniques depend on a high quality genome assembly and precise gene models. However, the first version of the genome assembly was generated by Sanger sequencing, and with a small set of RNA sequence data limiting annotation quality. RESULTS: Here, we present an improved genome assembly (Tcas5.2) and an enhanced genome annotation resulting in a new official gene set (OGS3) for Tribolium castaneum, which significantly increase the quality of the genomic resources. By adding large-distance jumping library DNA sequencing to join scaffolds and fill small gaps, the gaps in the genome assembly were reduced and the N50 increased to 4753kbp. The precision of the gene models was enhanced by the use of a large body of RNA-Seq reads of different life history stages and tissue types, leading to the discovery of 1452 novel gene sequences. We also added new features such as alternative splicing, well defined UTRs and microRNA target predictions. For quality control, 399 gene models were evaluated by manual inspection. The current gene set was submitted to Genbank and accepted as a RefSeq genome by NCBI. CONCLUSIONS: The new genome assembly (Tcas5.2) and the official gene set (OGS3) provide enhanced genomic resources for genetic work in Tribolium castaneum. The much improved information on transcription start sites supports transgenic and gene editing approaches. Further, novel types of information such as splice variants and microRNA target genes open additional possibilities for analysis.


Assuntos
Genes de Insetos , Genoma de Inseto , Genômica , Tribolium/genética , Animais , Sítios de Ligação , Biologia Computacional/métodos , Genômica/métodos , MicroRNAs/genética , Anotação de Sequência Molecular , Filogenia , Interferência de RNA , Reprodutibilidade dos Testes
5.
BMC Genomics ; 21(1): 227, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171258

RESUMO

BACKGROUND: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies. RESULTS: Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. CONCLUSIONS: Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.


Assuntos
Heterópteros/genética , Proteínas de Insetos/genética , Resistência a Inseticidas , Sequenciamento Completo do Genoma/métodos , Animais , Ecossistema , Transferência Genética Horizontal , Tamanho do Genoma , Heterópteros/classificação , Espécies Introduzidas , Filogenia
7.
BMC Genomics ; 20(1): 753, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31623555

RESUMO

BACKGROUND: The location and modular structure of eukaryotic protein-coding genes in genomic sequences can be automatically predicted by gene annotation algorithms. These predictions are often used for comparative studies on gene structure, gene repertoires, and genome evolution. However, automatic annotation algorithms do not yet correctly identify all genes within a genome, and manual annotation is often necessary to obtain accurate gene models and gene sets. As manual annotation is time-consuming, only a fraction of the gene models in a genome is typically manually annotated, and this fraction often differs between species. To assess the impact of manual annotation efforts on genome-wide analyses of gene structural properties, we compared the structural properties of protein-coding genes in seven diverse insect species sequenced by the i5k initiative. RESULTS: Our results show that the subset of genes chosen for manual annotation by a research community (3.5-7% of gene models) may have structural properties (e.g., lengths and exon counts) that are not necessarily representative for a species' gene set as a whole. Nonetheless, the structural properties of automatically generated gene models are only altered marginally (if at all) through manual annotation. Major correlative trends, for example a negative correlation between genome size and exonic proportion, can be inferred from either the automatically predicted or manually annotated gene models alike. Vice versa, some previously reported trends did not appear in either the automatic or manually annotated gene sets, pointing towards insect-specific gene structural peculiarities. CONCLUSIONS: In our analysis of gene structural properties, automatically predicted gene models proved to be sufficiently reliable to recover the same gene-repertoire-wide correlative trends that we found when focusing on manually annotated gene models only. We acknowledge that analyses on the individual gene level clearly benefit from manual curation. However, as genome sequencing and annotation projects often differ in the extent of their manual annotation and curation efforts, our results indicate that comparative studies analyzing gene structural properties in these genomes can nonetheless be justifiable and informative.


Assuntos
Genes de Insetos/genética , Genoma de Inseto/genética , Anotação de Sequência Molecular , Sequência de Aminoácidos , Composição de Bases , Sequência de Bases , Éxons , Íntrons
8.
Development ; 143(16): 3002-11, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27407103

RESUMO

Epithelial morphogenesis, the progressive restructuring of tissue sheets, is fundamental to embryogenesis. In insects, not only embryonic tissues but also extraembryonic (EE) epithelia play a crucial role in shaping the embryo. In Drosophila, the T-box transcription factor Dorsocross (Doc) is essential for EE tissue maintenance and therefore embryo survival. However, Drosophila possesses a single amnioserosa, whereas most insects have a distinct amnion and serosa. How does this derived situation compare with Doc function in the ancestral context of two EE epithelia? Here, we investigate the Doc orthologue in the red flour beetle, Tribolium castaneum, which is an excellent model for EE tissue complement and for functional, fluorescent live imaging approaches. Surprisingly, we find that Tc-Doc controls all major events in Tribolium EE morphogenesis without affecting EE tissue specification or maintenance. These macroevolutionary changes in function between Tribolium and Drosophila are accompanied by regulatory network changes, where BMP signaling and possibly the transcription factor Hindsight are downstream mediators. We propose that the ancestral role of Doc was to control morphogenesis and discuss how Tc-Doc could provide spatial precision for remodeling the amnion-serosa border.


Assuntos
Morfogênese/fisiologia , Tribolium/classificação , Tribolium/metabolismo , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Drosophila , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Morfogênese/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
BMC Genomics ; 19(1): 832, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463532

RESUMO

BACKGROUND: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group. RESULTS: Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats. CONCLUSIONS: Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders.


Assuntos
Genoma , Heterópteros/genética , Heterópteros/fisiologia , Proteínas de Insetos/genética , Adaptação Fisiológica , Animais , Evolução Molecular , Genômica , Heterópteros/classificação , Fenótipo , Filogenia
11.
Cells ; 13(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39056793

RESUMO

During animal embryogenesis, one of the earliest specification events distinguishes extraembryonic (EE) from embryonic tissue fates: the serosa in the case of the insects. While it is well established that the homeodomain transcription factor Zen1 is the critical determinant of the serosa, the subsequent realization of this tissue's identity has not been investigated. Here, we examine serosal differentiation in the beetle Tribolium castaneum based on the quantification of morphological and morphogenetic features, comparing embryos from a Tc-zen1 RNAi dilution series, where complete knockdown results in amnion-only EE tissue identity. We assess features including cell density, tissue boundary morphology, and nuclear size as dynamic readouts for progressive tissue maturation. While some features exhibit an all-or-nothing outcome, other key features show dose-dependent phenotypic responses with trait-specific thresholds. Collectively, these findings provide nuance beyond the known status of Tc-Zen1 as a selector gene for serosal tissue patterning. Overall, our approach illustrates how the analysis of tissue maturation dynamics from live imaging extends but also challenges interpretations based on gene expression data, refining our understanding of tissue identity and when it is achieved.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Tribolium , Animais , Tribolium/genética , Tribolium/crescimento & desenvolvimento , Membrana Serosa/metabolismo , Membrana Serosa/citologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/citologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Desenvolvimento Embrionário/genética
12.
Philos Trans R Soc Lond B Biol Sci ; 377(1865): 20210268, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36252225

RESUMO

It is fascinating that the amnion and serosa/chorion, two extraembryonic (EE) tissues that are characteristic of the amniote vertebrates (mammals, birds and reptiles), have also independently evolved in insects. In this review, we offer the first detailed, macroevolutionary comparison of EE development and tissue biology across these animal groups. Some commonalities represent independent solutions to shared challenges for protecting the embryo (environmental assaults, risk of pathogens) and supporting its development, including clear links between cellular properties (e.g. polyploidy) and physiological function. Further parallels encompass developmental features such as the early segregation of the serosa/chorion compared to later, progressive differentiation of the amnion and formation of the amniotic cavity from serosal-amniotic folds as a widespread morphogenetic mode across species. We also discuss common developmental roles for orthologous transcription factors and BMP signalling in EE tissues of amniotes and insects, and between EE and cardiac tissues, supported by our exploration of new resources for global and tissue-specific gene expression. This highlights the degree to which general developmental principles and protective tissue features can be deduced from each of these animal groups, emphasizing the value of broad comparative studies to reveal subtle developmental strategies and answer questions that are common across species. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.


Assuntos
Âmnio , Insetos , Âmnio/metabolismo , Animais , Mamíferos , Morfogênese/fisiologia , Membrana Serosa/metabolismo , Fatores de Transcrição/metabolismo
13.
Adv Genet (Hoboken) ; 3(3): 2100064, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36620196

RESUMO

Parental RNA interference (pRNAi) is a powerful and widely used method for gene-specific knockdown. Yet in insects its efficacy varies between species, and how the systemic response is transmitted from mother to offspring remains elusive. Using the beetle Tribolium castaneum, an RT-qPCR strategy to distinguish the presence of double-stranded RNA (dsRNA) from endogenous mRNA is reported. It is found that injected dsRNA is directly transmitted into the egg and persists throughout embryogenesis. Despite this depletion of dsRNA from the mother, it is shown that strong pRNAi can persist for months before waning at strain-specific rates. In seeking the receptor proteins for cellular uptake of long dsRNA into the egg, a phylogenomics profiling approach of candidate proteins is also presented. A visualization strategy based on taxonomically hierarchical assessment of orthology clustering data to rapidly assess gene age and copy number changes, refined by sequence-based evidence, is demonstrated. Repeated losses of SID-1-like channel proteins in the arthropods, including wholesale loss in the Heteroptera (true bugs), which are nonetheless highly sensitive to pRNAi, are thereby documented. Overall, practical considerations for insect pRNAi against a backdrop of outstanding questions on the molecular mechanism of dsRNA transmission for long-term, systemic knockdown are elucidated.

14.
Adv Genet (Hoboken) ; 3(3): 2270031, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36620198

RESUMO

dsRNA Uptake In article 2100064 by Kristen A. Panfilio and co-workers, the cuticle exoskeleton of flour beetle larvae reveals normal anatomy (above: head-to-tail in blue-to-red) and long-term parental RNAi knockdown (below), here showing a mirror-image duplication of the abdomen (red termini to yellow center). Strong knockdown can persist for months despite transmission of full-length double-stranded RNA (dsRNA) from the mother into the egg, depleting maternal dsRNA levels.

15.
Dev Biol ; 340(1): 100-15, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20045678

RESUMO

As extra-embryonic tissues, the amnion and serosa are not considered to contribute materially to the insect embryo, yet they must execute an array of morphogenetic movements before they are dispensable. In hemimetabolous insects, these movements have been known for over a century, but they have remained virtually unexamined. This study addresses late extraembryonic morphogenesis in the milkweed bug, Oncopeltus fasciatus. Cell shape changes and apoptosis profiles are used to characterize the membranes as they undergo a large repertoire of final reorganizational events that reposition the embryo (katatrepsis), and eliminate the membranes themselves in an ordered fashion (dorsal closure). A number of key features were identified. First, amnion-serosa "fusion" involves localized apoptosis in the amnion and the formation of a supracellular actin purse string at the amnion-serosa border. During katatrepsis, a 'focus' of serosal cells undergoes precocious columnarization and may serve as an anchor for contraction. Lastly, dorsal closure involves novel modifications of the amnion and embryonic flank that are without counterpart during the well-known process of dorsal closure in the fruit fly Drosophila melanogaster. These data also address the long-standing question of the final fate of the amnion: it undergoes apoptosis during dorsal closure and thus is likely to be solely extraembryonic.


Assuntos
Hemípteros/embriologia , Membrana Serosa/embriologia , Âmnio/embriologia , Âmnio/metabolismo , Animais , Apoptose , Padronização Corporal , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Hemípteros/metabolismo , Morfogênese , Membrana Serosa/metabolismo
16.
BMC Genomics ; 12: 61, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21266083

RESUMO

BACKGROUND: Most evolutionary developmental biology ("evo-devo") studies of emerging model organisms focus on small numbers of candidate genes cloned individually using degenerate PCR. However, newly available sequencing technologies such as 454 pyrosequencing have recently begun to allow for massive gene discovery in animals without sequenced genomes. Within insects, although large volumes of sequence data are available for holometabolous insects, developmental studies of basally branching hemimetabolous insects typically suffer from low rates of gene discovery. RESULTS: We used 454 pyrosequencing to sequence over 500 million bases of cDNA from the ovaries and embryos of the milkweed bug Oncopeltus fasciatus, which lacks a sequenced genome. This indirectly developing insect occupies an important phylogenetic position, branching basal to Diptera (including fruit flies) and Hymenoptera (including honeybees), and is an experimentally tractable model for short-germ development. 2,087,410 reads from both normalized and non-normalized cDNA assembled into 21,097 sequences (isotigs) and 112,531 singletons. The assembled sequences fell into 16,617 unique gene models, and included predictions of splicing isoforms, which we examined experimentally. Discovery of new genes plateaued after assembly of ~1.5 million reads, suggesting that we have sequenced nearly all transcripts present in the cDNA sampled. Many transcripts have been assembled at close to full length, and there is a net gain of sequence data for over half of the pre-existing O. fasciatus accessions for developmental genes in GenBank. We identified 10,775 unique genes, including members of all major conserved metazoan signaling pathways and genes involved in several major categories of early developmental processes. We also specifically address the effects of cDNA normalization on gene discovery in de novo transcriptome analyses. CONCLUSIONS: Our sequencing, assembly and annotation framework provide a simple and effective way to achieve high-throughput gene discovery for organisms lacking a sequenced genome. These data will have applications to the study of the evolution of arthropod genes and genetic pathways, and to the wider evolution, development and genomics communities working with emerging model organisms.[The sequence data from this study have been submitted to GenBank under study accession number SRP002610 (http://www.ncbi.nlm.nih.gov/sra?term=SRP002610). Custom scripts generated are available at http://www.extavourlab.com/protocols/index.html. Seven Additional files are available.].


Assuntos
Heterópteros/genética , Proteínas de Insetos/genética , Animais , DNA Complementar/genética , Embrião não Mamífero/metabolismo , Feminino , Perfilação da Expressão Gênica , Ovário/metabolismo
17.
Dev Biol ; 333(2): 297-311, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19580800

RESUMO

Many insects undergo katatrepsis, essential reorganization by the extraembryonic membranes that repositions the embryo. Knockdown of the zen gene by RNA interference (RNAi) prevents katatrepsis in the milkweed bug Oncopeltus fasciatus. However, the precise morphogenetic defect has been uncertain, and katatrepsis itself has not been characterized in detail. The dynamics of wild type and zen(RNAi) eggs were analyzed from time-lapse movies, supplemented by analysis of fixed specimens. These investigations identify three zen(RNAi) defects. First, a reduced degree of tissue contraction implies a role for zen in baseline compression prior to katatrepsis. Subsequently, a characteristic 'bouncing' activity commences, leading to the initiation of katatrepsis in wild type eggs. The second zen(RNAi) defect is a delay in this activity, suggesting that a temporal window of opportunity is missed after zen knockdown. Ultimately, the extraembryonic membranes fail to rupture in zen(RNAi) eggs: the third defect. Nevertheless, the outer serosal membrane manages to contract, albeit in an aberrant fashion with additional phenotypic consequences for the embryo. These data identify a novel epithelial morphogenetic event - rupture of the 'serosal window' structure - as the ultimate site of defect. Overall, Oncopeltus zen seems to have a role in coordinating a number of pre-katatreptic events during mid embryogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Heterópteros/embriologia , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Interferência de RNA , Animais , Fenômenos Biomecânicos , Padronização Corporal/genética , Adesão Celular , Desenvolvimento Embrionário/genética , Epitélio/embriologia , Genes de Insetos , Heterópteros/genética , Proteínas de Insetos/fisiologia , Modelos Biológicos , Morfogênese/genética , Fatores de Tempo
18.
Commun Biol ; 3(1): 552, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020571

RESUMO

Insect Hox3/zen genes represent an evolutionary hotspot for changes in function and copy number. Single orthologues are required either for early specification or late morphogenesis of the extraembryonic tissues, which protect the embryo. The tandemly duplicated zen paralogues of the beetle Tribolium castaneum present a unique opportunity to investigate both functions in a single species. We dissect the paralogues' expression dynamics (transcript and protein) and transcriptional targets (RNA-seq after RNAi) throughout embryogenesis. We identify an unexpected role of Tc-Zen2 in repression of Tc-zen1, generating a negative feedback loop that promotes developmental progression. Tc-Zen2 regulation is dynamic, including within co-expressed multigene loci. We also show that extraembryonic development is the major event within the transcriptional landscape of late embryogenesis and provide a global molecular characterization of the extraembryonic serosal tissue. Altogether, we propose that paralogue mutual regulation arose through multiple instances of zen subfunctionalization, leading to their complementary extant roles.


Assuntos
Tribolium/genética , Animais , Sequência Conservada , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes de Insetos/genética , Genes de Insetos/fisiologia , Filogenia , Análise de Sequência de RNA , Transcrição Gênica , Tribolium/embriologia , Tribolium/crescimento & desenvolvimento
19.
Elife ; 92020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32672535

RESUMO

The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G-protein-coupled receptors that control physiology and behaviour, the Robo-Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship.


Assuntos
Evolução Biológica , Genoma , Invertebrados/genética , Vertebrados/genética , Animais , Evolução Molecular , Genômica , Invertebrados/classificação , Filogenia , Vertebrados/classificação
20.
Nat Commun ; 11(1): 5604, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154375

RESUMO

Many animal embryos pull and close an epithelial sheet around the ellipsoidal egg surface during a gastrulation process known as epiboly. The ovoidal geometry dictates that the epithelial sheet first expands and subsequently compacts. Moreover, the spreading epithelium is mechanically stressed and this stress needs to be released. Here we show that during extraembryonic tissue (serosa) epiboly in the insect Tribolium castaneum, the non-proliferative serosa becomes regionalized into a solid-like dorsal region with larger non-rearranging cells, and a more fluid-like ventral region surrounding the leading edge with smaller cells undergoing intercalations. Our results suggest that a heterogeneous actomyosin cable contributes to the fluidization of the leading edge by driving sequential eviction and intercalation of individual cells away from the serosa margin. Since this developmental solution utilized during epiboly resembles the mechanism of wound healing, we propose actomyosin cable-driven local tissue fluidization as a conserved morphogenetic module for closure of epithelial gaps.


Assuntos
Epitélio/embriologia , Gastrulação/fisiologia , Insetos/embriologia , Actomiosina/metabolismo , Animais , Fenômenos Biomecânicos , Movimento Celular , Epitélio/metabolismo , Proteínas de Insetos/metabolismo , Morfogênese , Membrana Serosa/embriologia , Membrana Serosa/metabolismo , Tribolium/embriologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa