RESUMO
Room temperature phosphorescence (RTP) nanoprobes play crucial roles in hypoxia imaging due to their high signal-to-background ratio (SBR) in the time domain. However, synthesizing RTP probes in aqueous media with a small size and high quantum yield remains challenging for intracellular hypoxic imaging up to present. Herein, aqueous RTP nanoprobes consisting of naphthalene anhydride derivatives, cucurbit[7]uril (CB[7]), and organosilicon are reported via supermolecular confined methods. Benefiting from the noncovalent confinement of CB[7] and hydrolysis reactions of organosilicon, such small-sized RTP nanoprobes (5-10 nm) exhibit inherent tunable phosphorescence (from 400 to 680 nm) with microsecond second lifetimes (up to â¼158.7 µs) and high quantum yield (up to â¼30%). The as-prepared RTP nanoprobes illustrate excellent intracellular hypoxia responsibility in a broad range from â¼0.1 to 21% oxygen concentrations. Compared to traditional fluorescence mode, the SBR value (â¼108.69) of microsecond-range time-resolved in vitro imaging is up to 2.26 times greater in severe hypoxia (<0.1% O2), offering opportunities for precision imaging analysis in a hypoxic environment.
Assuntos
Compostos Heterocíclicos com 2 Anéis , Imidazóis , Imidazolidinas , Compostos Macrocíclicos , Humanos , Imidazóis/química , Silício/química , Nanopartículas/química , Hipóxia Celular , Hidrocarbonetos Aromáticos com Pontes/química , Imagem Óptica , Corantes Fluorescentes/química , Medições Luminescentes , Naftalenos/química , Fatores de Tempo , Células HeLaRESUMO
We report the "water-in-oil-in-water" preparation of kidney injury molecule-1-targeting supramolecular chemiluminescence (CL) reporters (PCCS), consisting of L-serine-modified poly(lactic-co-glycolic) acid (PLGA)-encapsulated peroxyoxalate (CPPO), chlorin e6 (Ce6) and superoxide dismutase (SOD), for early diagnosis and amelioration of acute kidney injury (AKI). In this system, O2 â - , a biomarker of AKI, triggers the oxidation of CPPO to 1,2-dioxetanedione and subsequent CL emission via CL resonance energy transfer to Ce6. The L-serine-modified PLGA stabilizes CPPO and Ce6 via noncovalent interactions, promoting long-lived CL (half-lives: ≈1000â s). Transcriptomics analysis shows that PCCS reporters reduce the inflammatory response through glutathione metabolism and inhibition of the tumor necrosis factor signaling pathway. The reporters are able to non-invasively detect AKI at least 12â h earlier than current assays, and their antioxidant properties allow simultaneous treatment of AKI.
Assuntos
Injúria Renal Aguda , Superóxidos , Humanos , Luminescência , Superóxido Dismutase/metabolismo , Injúria Renal Aguda/diagnóstico , Ácido Láctico , Diagnóstico Precoce , ÁguaRESUMO
Herein, we present a class of multi-functional hydrogels, which simultaneously features strong fluorescence, ultralong room-temperature phosphorescence (RTP), and excellent self-healing properties. In particular, the as-prepared hydrogels could produce strong fluorescence with a photoluminescence quantum yield (PLQY) value of 22.4%, as well as ultralong RTP (lasts for â¼20 s with phosphorescence lifetime of â¼264 ms). In addition to the superior optical performance, the as-prepared hydrogels possess excellent self-healing property, with â¼91.5% self-healing efficiency at room temperature and an increased elasticity of â¼281%. Taking advantages of these unique merits, we further exploit such high-performance hydrogels for advanced anti-counterfeiting applications. Significantly, the hydrogel-based anti-counterfeiting tags are capable of realizing multi-color static information in the spatial scale and more than five kinds of dynamic information during 15 s of the phosphorescence decay process in the temporal scale.
Assuntos
Hidrogéis , FluorescênciaRESUMO
Probes featuring room-temperature phosphorescence (RTP) are promising tools for time-resolved imaging. It is worth noting that the time scale of time-resolved bioimaging generally ranges around the microsecond level, because of the short-lived emission. Herein, the first example of millisecond-range time-resolved bioimaging is illustrated, which is enabled through a kind of ultralong aqueous phosphorescence probes (i.e., cyclo-(Arg-Gly-AspD-Tyr-Cys)-conjugated zinc-doped silica nanospheres), with a RTP emission lasting for ≈5â s and a lifetime as long as 743.7â ms. We demonstrate that live cells and deep tumor tissue in mice can be specifically targeted through immune-phosphorescence imaging, with a high signal-to-background ratio (SBR) value of ≈69 for in vitro imaging, and ≈627 for in vivo imaging, respectively. We further show that, compared to that of fluorescence imaging, the SBR enhancement of millisecond-range time-resolved in vivo bioimaging is up to 105â times.
Assuntos
Luminescência , Neoplasias , Animais , Camundongos , Neoplasias/patologia , Imagem Óptica , Dióxido de Silício , ZincoRESUMO
We present a facile strategy to achieve purely organic multi-colour room-temperature phosphorescence (RTP) films by doping typical fused-ring compounds into a poly(vinyl alcohol) matrix. Such RTP films demonstrate inherent RTP emission ranging from green to red with a long lifetime and high quantum yield (QY) (lifetime: â¼0.56 ms, QY: â¼35.4%). We further exploit such high-performance RTP films for dynamic information encryption.
RESUMO
Enzyme mimics (EMs) with intrinsic catalysis activity have attracted enormous interest in biomedicine. However, there is a lack of environmentally adaptive EMs for sensitive diagnosis and specific catalytic therapeutics in simultaneous manners. Herein, the coordination modulation strategy is designed to synthesize silicon-based phosphorescence enzyme-mimics (SiPEMs). Specifically, the atomic-level engineered Co-N4 structure in SiPEMs enables the environment-adaptive peroxidase, oxidase, and catalase-like activities. More intriguingly, the internal Si-O networks are able to stabilize the triplet state, exhibiting long-lived phosphorescence with lifetime of 124.5 ms, suitable for millisecond-range time-resolved imaging of tumor cells and tissue in mice (with high signal-to-background ratio values of â¼60.2 for in vitro and â¼611 for in vivo). Meanwhile, the SiPEMs act as an oxidative stress amplifier, allowing the production of ·OH via cascade reactions triggered by the tumor microenvironment (â¼136-fold enhancement in peroxidase catalytic efficiency); while the enzyme-mimics can scavenge the accumulation of reactive oxygen species to alleviate the oxidative damage in normal cells, they are therefore suitable for environment-adaptive catalytic treatment of cancer in specific manners. We innovate a systematic strategy to develop high-performance enzymemics, constructing a promising breakthrough for replacing traditional enzymes in cancer treatment applications.