Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(40): 14328-14335, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37748943

RESUMO

Micro/nanospherical lens photolithography (SLPL) constitutes an efficient and precise micro/nanofabrication methodology. It offers advantages over traditional nanolithography approaches, such as cost-effectiveness and ease of implementation. By using micrometer-sized microspheres, SLPL enables the preparation of subwavelength scale features. This technique has gained attention due to its potential applications. However, the SLPL process has a notable limitation in that it mostly produces simple pattern shapes, mainly consisting of circular arrays. There has been a lack of theoretical analysis regarding the possible shapes that can be created. In our experiments, we successfully prepared annular and ring-with-hole pattern shapes. To address this limitation, we applied the Mie scattering theory to systematically analyze and summarize the various patterns that can be obtained through the SLPL process. We also proposed methods to predict and obtain different patterns. This theoretical analysis enhances the understanding of SLPL and expands its potential applications, making it a valuable area for further research.

2.
ACS Appl Mater Interfaces ; 14(42): 48250-48261, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36240235

RESUMO

Recently, low interfacial toughness (LIT) materials have been developed to solve large-scale deicing problems. According to the theory of interfacial fracture, ice detachment is dominated by strength-controlled or toughness-controlled regimes, which are characterized by adhesive strength or constant shear force. Here, a new strategy is introduced to regulate the interfacial toughness of poly(dimethylsiloxane) (PDMS) coatings using silicon dioxide nanoparticles (SiO2 NPs) and phenylmethyl silicone oil (PMSO). By systematically adjusting the doping proportion of SiO2 NPs and PMSO, it is found that a lower interfacial toughness can be achieved with a lower constant shear force. The synergistic effect of the two dopants on the adhesive strength and interfacial toughness is analyzed. Meanwhile, finite element method (FEM) analysis of ice detachment is conducted to show the cracking process intuitively and explicate the mechanism of lowering the interfacial toughness of PDMS by doping SiO2 NPs and PMSO. It can be concluded that the cohesive zone material (CZM) model is effective for simulating the deicing process of PDMS coatings and provides a comprehensive understanding of the modulation of interfacial toughness.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa