Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Immunol Rev ; 313(1): 64-70, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089768

RESUMO

The evolutionary history of complement suggests that the alternative pathway arose prior to the arrival of the classical and lectin pathways. In these pathways, target specificity is provided by antibodies and sugar specific lectins. While these efficient initiation systems dominate activation on most targets, the alternative pathway produces most of the C3b and 80%-90% of the C5b-9. While the tickover process, originally proposed by Peter Lachmann, provided ancient hosts with a crude self/non-self-discriminatory system that initiated complement attack on everything foreign, tickover clearly plays a more minor role in complement activation in modern organisms possessing classical and lectin pathways. Spontaneous activation of the alternative pathway via tickover may play a major role in human pathologies where tissue damage is complement-mediated. The molecular mechanism of tickover is still not convincingly proven. Prevailing hypotheses include (a) spontaneous hydrolysis of the thioester in C3 forming the C3b-like C3(H2 O) in solution and (b) "enhanced tickover" in which surfaces cause specific or non-specific contact activated conformational changes in C3. Theoretical considerations, including computer simulations, suggest that the latter mechanism is more likely and that more research needs to be devoted to understanding interactions between biological surfaces and C3.


Assuntos
Complemento C3 , Complemento C3b , Humanos , Complemento C3/metabolismo , Complemento C3b/metabolismo , Ativação do Complemento , Anticorpos , Compostos de Enxofre , Via Alternativa do Complemento
2.
J Immunol ; 190(7): 3560-9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23436934

RESUMO

Factor H (fH) is an endogenous negative regulator of the alternative pathway (AP) that binds polyanions as well as complement activation fragments C3b and C3d. The AP is both necessary and sufficient to develop collagen Ab-induced arthritis (CAIA) in mice; the mechanisms whereby normal control of the AP is overcome and injury develops are unknown. Although primarily a soluble circulating protein, fH can also bind to tissues in a manner dependent on the carboxyl-terminal domain containing short consensus repeats 19 and 20. We examined the role of fH in CAIA by blocking its binding to tissues through administration of a recombinant negative inhibitor containing short consensus repeats 19 and 20 (rfH19-20), which impairs fH function and amplifies surface AP activation in vitro. Administration of rfH19-20, but not control rfH3-5, significantly worsened clinical disease activity, histopathologic injury, and C3 deposition in the synovium and cartilage in wild-type and fH(+/-) mice. In vitro studies demonstrated that rfH19-20 increased complement activation on cartilage extracts and injured fibroblast-like synoviocytes, two major targets of complement deposition in the joint. We conclude that endogenous fH makes a significant contribution to inhibition of the AP in CAIA through binding to sites of immune complex formation and complement activation.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Artrite Experimental/imunologia , Fator H do Complemento/imunologia , Animais , Artrite Experimental/genética , Cartilagem/imunologia , Cartilagem/metabolismo , Ativação do Complemento/imunologia , Complemento C3/genética , Complemento C3/imunologia , Complemento C3/metabolismo , Complemento C5/imunologia , Complemento C5/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Articulações/imunologia , Articulações/patologia , Masculino , Camundongos , Camundongos Knockout , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica
3.
J Pharmacol Exp Ther ; 351(3): 709-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25301170

RESUMO

Differences in sensitivity of monkeys and humans to antisense oligonucleotide (ASO)-induced complement alternative pathway (AP) activation were evaluated in monkeys, humans, and in serum using biochemical assays. Transient AP activation was evident in monkeys at higher doses of two 2'-O-methoxyethyl (2'-MOE) ASOs (ISIS 426115 and ISIS 183750). No evidence of AP activation was observed in humans for either ASO, even with plasma ASO concentrations that reached the threshold for activation in monkeys. The absence of complement activation in humans is consistent with a query of the Isis Clinical Safety Database containing 767 subjects. The in vivo difference in sensitivity was confirmed in vitro, as monkey and human serum exposed to increasing concentrations of ASO indicated that monkeys were more sensitive to AP activation with this class of compounds. The mechanistic basis for the greater sensitivity of monkeys to AP activation by 2'-MOE ASO was evaluated using purified human or monkey factor H protein. The binding affinities between a representative 2'-MOE ASO and either purified protein are similar. However, the IC50 of fluid-phase complement inhibition for monkey factor H is about 3-fold greater than that for human protein using either monkey serum or factor H-depleted human serum. Interestingly, there is a sequence variant in the monkey complement factor H gene similar to a single nucleotide polymorphism in humans that is correlated with decreased factor H protein function. These findings show that monkeys are more sensitive to 2'-MOE ASO-mediated complement activation than humans likely because of differences in factor H inhibitory capacity.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/fisiologia , Fator H do Complemento/genética , Compreensão , Oligonucleotídeos Antissenso/farmacologia , Oligorribonucleotídeos/farmacologia , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Humanos , Macaca fascicularis , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Oligonucleotídeos , Oligonucleotídeos Antissenso/genética , Oligorribonucleotídeos/genética , Adulto Jovem
4.
J Immunol ; 188(2): 661-7, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22174452

RESUMO

Activation of the alternative pathway of complement plays a critical role in the development of allergen-induced airway hyperresponsiveness (AHR) and inflammation in mice. Endogenous factor H, a potent inhibitor of the alternative pathway, is increased in the airways of sensitized and challenged mice, but its role in regulating inflammation or AHR has been unknown. We found that blocking the tissue-binding function of factor H with a competitive antagonist increased complement activation and tissue inflammation after allergen challenge of sensitized mice. Conversely, administration of a fusion protein that contains the iC3b/C3d binding region of complement receptor 2 linked to the inhibitory region of factor H, a molecule directly targeting complement-activating surfaces, protected mice in both primary and secondary challenge models of AHR and lung inflammation. Thus, although endogenous factor H does play a role in limiting the development of AHR, strategies to deliver the complement-regulatory region of factor H specifically to the site of inflammation provide greater protection than that afforded by endogenous regulators. Such an agent may be an effective therapy for the treatment of asthma.


Assuntos
Alérgenos/administração & dosagem , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/patologia , Fator H do Complemento/fisiologia , Via Alternativa do Complemento/imunologia , Mediadores da Inflamação/fisiologia , Alérgenos/imunologia , Animais , Asma/imunologia , Asma/metabolismo , Asma/patologia , Hiper-Reatividade Brônquica/metabolismo , Feminino , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/administração & dosagem , Ovalbumina/imunologia
5.
J Infect Dis ; 207(7): 1128-34, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23303803

RESUMO

Acinetobacter baumannii is an important nosocomial pathogen. Infections are often preceded by intubation or catheter use, promoting the formation of biofilm, and some strains are able to cause severe cases of bacteremia because of their ability to resist killing by complement. We identified a secreted serine protease, termed "PKF," that provided resistance to complement killing and suppressed biofilm formation. Serum resistance was abrogated in A. baumannii treated with protease inhibitors, as well as in a PKF-negative mutant. Serum resistance could be restored by recombinant PKF, which was shown to reduce the complement activity of normal human serum by almost 50%. PKF was shown to inhibit biofilm formation, because the PKF-negative mutant and wild-type A. baumannii treated with protease inhibitors produced biofilm that could be inhibited by addition of recombinant PKF. Our data indicate that PKF is required for serum resistance and that it suppresses biofilm formation in A. baumannii.


Assuntos
Acinetobacter baumannii/enzimologia , Biofilmes/efeitos dos fármacos , Atividade Bactericida do Sangue , Farmacorresistência Bacteriana , Serina Proteases/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Sequência de Aminoácidos , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Clonagem Molecular , Via Alternativa do Complemento , Genes Bacterianos , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Dados de Sequência Molecular , Inibidores de Proteases/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Serina Proteases/genética , Serina Proteases/farmacologia , Sulfonas/farmacologia
6.
J Biol Chem ; 287(5): 3550-8, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22158621

RESUMO

C-reactive protein (CRP) is a cyclic pentameric protein whose major binding specificity, at physiological pH, is for substances bearing exposed phosphocholine moieties. Another pentameric form of CRP, which exists at acidic pH, displays binding activity for oxidized LDL (ox-LDL). The ox-LDL-binding site in CRP, which is hidden at physiological pH, is exposed by acidic pH-induced structural changes in pentameric CRP. The aim of this study was to expose the hidden ox-LDL-binding site of CRP by site-directed mutagenesis and to generate a CRP mutant that can bind to ox-LDL without the requirement of acidic pH. Mutation of Glu(42), an amino acid that participates in intersubunit interactions in the CRP pentamer and is buried, to Gln resulted in a CRP mutant (E42Q) that showed significant binding activity for ox-LDL at physiological pH. For maximal binding to ox-LDL, E42Q CRP required a pH much less acidic than that required by wild-type CRP. At any given pH, E42Q CRP was more efficient than wild-type CRP in binding to ox-LDL. Like wild-type CRP, E42Q CRP remained pentameric at acidic pH. Also, E42Q CRP was more efficient than wild-type CRP in binding to several other deposited, conformationally altered proteins. The E42Q CRP mutant provides a tool to investigate the functions of CRP in defined animal models of inflammatory diseases including atherosclerosis because wild-type CRP requires acidic pH to bind to deposited, conformationally altered proteins, including ox-LDL, and available animal models may not have sufficient acidosis or other possible modifiers of the pentameric structure of CRP at the sites of inflammation.


Assuntos
Proteína C-Reativa/química , Lipoproteínas LDL/química , Mutagênese Sítio-Dirigida , Mapeamento de Peptídeos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Células CHO , Cricetinae , Cricetulus , Humanos , Concentração de Íons de Hidrogênio , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Ligação Proteica
7.
J Immunol ; 185(1): 507-16, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20530262

RESUMO

Properdin, a positive regulator of the alternative pathway (AP) of complement is important in innate immune defenses against invasive neisserial infections. Recently, commercially available unfractionated properdin was shown to bind to certain biological surfaces, including Neisseria gonorrhoeae, which facilitated C3 deposition. Unfractionated properdin contains aggregates or high-order oligomers, in addition to its physiological "native" (dimeric, trimeric, and tetrameric) forms. We examined the role of properdin in AP activation on diverse strains of Neisseria meningitidis and N. gonorrhoeae specifically using native versus unfractionated properdin. C3 deposition on Neisseria decreased markedly when properdin function was blocked using an anti-properdin mAb or when properdin was depleted from serum. Maximal AP-mediated C3 deposition on Neisseriae even at high (80%) serum concentrations required properdin. Consistent with prior observations, preincubation of bacteria with unfractionated properdin, followed by the addition of properdin-depleted serum resulted in higher C3 deposition than when bacteria were incubated with properdin-depleted serum alone. Unexpectedly, none of 10 Neisserial strains tested bound native properdin. Consistent with its inability to bind to Neisseriae, preincubating bacteria with native properdin followed by the addition of properdin-depleted serum did not cause detectable increases in C3 deposition. However, reconstituting properdin-depleted serum with native properdin a priori enhanced C3 deposition on all strains of Neisseria tested. In conclusion, the physiological forms of properdin do not bind directly to either N. meningitidis or N. gonorrhoeae but play a crucial role in augmenting AP-dependent C3 deposition on the bacteria through the "conventional" mechanism of stabilizing AP C3 convertases.


Assuntos
Via Alternativa do Complemento/imunologia , Neisseria gonorrhoeae/imunologia , Neisseria meningitidis Sorogrupo A/imunologia , Neisseria meningitidis Sorogrupo B/imunologia , Neisseria meningitidis Sorogrupo C/imunologia , Neisseria meningitidis Sorogrupo W-135/imunologia , Neisseria meningitidis Sorogrupo Y/imunologia , Properdina/fisiologia , Aderência Bacteriana/imunologia , Complemento C3/metabolismo , C3 Convertase da Via Alternativa do Complemento/metabolismo , Via Alternativa do Complemento/genética , Estabilidade Enzimática/imunologia , Humanos , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Neisseria meningitidis Sorogrupo A/genética , Neisseria meningitidis Sorogrupo A/metabolismo , Neisseria meningitidis Sorogrupo B/genética , Neisseria meningitidis Sorogrupo B/metabolismo , Neisseria meningitidis Sorogrupo C/genética , Neisseria meningitidis Sorogrupo C/metabolismo , Neisseria meningitidis Sorogrupo W-135/genética , Neisseria meningitidis Sorogrupo W-135/metabolismo , Neisseria meningitidis Sorogrupo Y/genética , Neisseria meningitidis Sorogrupo Y/metabolismo , Properdina/isolamento & purificação , Properdina/metabolismo , Ligação Proteica/imunologia
8.
J Immunol ; 185(5): 3086-94, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20675597

RESUMO

Congenital and acquired deficiencies of complement regulatory proteins are associated with pathologic complement activation in several renal diseases. To elucidate the mechanisms by which renal tubular epithelial cells (TECs) control the complement system, we examined the expression of complement regulatory proteins by the cells. We found that Crry is the only membrane-bound complement regulator expressed by murine TECs, and its expression is concentrated on the basolateral surface. Consistent with the polarized localization of Crry, less complement activation was observed when the basolateral surface of TECs was exposed to serum than when the apical surface was exposed. Furthermore, greater complement activation occurred when the basolateral surface of TECs from Crry(-/-)fB(-/-) mice was exposed to normal serum compared with TECs from wild-type mice. Complement activation on the apical and basolateral surfaces was also greater when factor H, an alternative pathway regulatory protein found in serum, was blocked from interacting with the cells. Finally, we injected Crry(-/-)fB(-/-) and Crry(+/+)fB(-/-) mice with purified factor B (an essential protein of the alternative pathway). Spontaneous complement activation was seen on the tubules of Crry(-/-)fB(-/-) mice after injection with factor B, and the mice developed acute tubular injury. These studies indicate that factor H and Crry regulate complement activation on the basolateral surface of TECs and that factor H regulates complement activation on the apical surface. However, congenital deficiency of Crry or reduced expression of the protein on the basolateral surface of injured cells permits spontaneous complement activation and tubular injury.


Assuntos
Fator H do Complemento/fisiologia , Proteínas Inativadoras do Complemento/fisiologia , Células Epiteliais/imunologia , Túbulos Renais/imunologia , Receptores de Complemento/fisiologia , Animais , Células Cultivadas , Fator H do Complemento/biossíntese , Fator H do Complemento/deficiência , Proteínas Inativadoras do Complemento/deficiência , Via Alternativa do Complemento/imunologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Túbulos Renais/citologia , Túbulos Renais/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/deficiência , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica/imunologia , Receptores de Complemento/biossíntese , Receptores de Complemento/deficiência , Receptores de Complemento 3b
9.
Front Immunol ; 13: 918856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713423

RESUMO

Properdin acts as an essential positive regulator of the alternative pathway of complement by stabilizing enzymatic convertases. Identical properdin monomers form head-to-tail associations of oligomers in a reported 20:54:26 ratio (most often described as an approximate 1:2:1 ratio) of tetramers (P4), trimers (P3), and dimers (P2), in blood, under normal physiological conditions. Oligomeric size is proportional to properdin function with tetramers being more active, followed by trimers and dimers. Neutrophils are the most abundant granulocyte, are recruited to inflammatory microenvironments, and are a significant source of properdin, yet the ratio of properdin oligomers released from neutrophils is unknown. The oligomer ratio of neutrophil-derived properdin could have functional consequences in local microenvironments where neutrophils are abundant and complement drives inflammation. We investigated the oligomer properties of neutrophil-derived properdin, as compared to that of normal human sera, using a novel ELISA-based method that detects function of properdin in a way that was proportional to the oligomeric size of properdin (i.e., the larger the oligomer, the higher the detected function). Unexpectedly, neutrophil-derived properdin had 5-fold lower function than donor-matched serum-derived properdin. The lower function was due to a lower percentage of tetramers/trimers and more dimers, indicating a significantly different P4:P3:P2 ratio in neutrophil-derived properdin (18:34:48) as compared to donor-matched serum (29:43:29). Release of lower-order oligomers by neutrophils may constitute a novel regulatory mechanism to control the rate of complement activation in cellular microenvironments. Further studies to determine the factors that affect properdin oligomerization and whether, or how, the predominant dimers in neutrophil-derived properdin, assimilate to the ~1:2:1 ratio found in serum are warranted.


Assuntos
Neutrófilos , Properdina , Humanos , Properdina/metabolismo , Neutrófilos/metabolismo , Ativação do Complemento , Inflamação
10.
J Biol Chem ; 285(46): 36235-44, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20843812

RESUMO

C-reactive protein (CRP) is a phylogenetically conserved protein; in humans, it is present in the plasma and at sites of inflammation. At physiological pH, native pentameric CRP exhibits calcium-dependent binding specificity for phosphocholine. In this study, we determined the binding specificities of CRP at acidic pH, a characteristic of inflammatory sites. We investigated the binding of fluid-phase CRP to six immobilized proteins: complement factor H, oxidized low-density lipoprotein, complement C3b, IgG, amyloid ß, and BSA immobilized on microtiter plates. At pH 7.0, CRP did not bind to any of these proteins, but, at pH ranging from 5.2 to 4.6, CRP bound to all six proteins. Acidic pH did not monomerize CRP but modified the pentameric structure, as determined by gel filtration, 1-anilinonaphthalene-8-sulfonic acid-binding fluorescence, and phosphocholine-binding assays. Some modifications in CRP were reversible at pH 7.0, for example, the phosphocholine-binding activity of CRP, which was reduced at acidic pH, was restored after pH neutralization. For efficient binding of acidic pH-treated CRP to immobilized proteins, it was necessary that the immobilized proteins, except factor H, were also exposed to acidic pH. Because immobilization of proteins on microtiter plates and exposure of immobilized proteins to acidic pH alter the conformation of immobilized proteins, our findings suggest that conformationally altered proteins form a CRP-ligand in acidic environment, regardless of the identity of the protein. This ligand binding specificity of CRP in its acidic pH-induced pentameric state has implications for toxic conditions involving protein misfolding in acidic environments and favors the conservation of CRP throughout evolution.


Assuntos
Proteína C-Reativa/química , Proteína C-Reativa/metabolismo , Ligantes , Multimerização Proteica , Ácidos/química , Substituição de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Animais , Sítios de Ligação/genética , Proteína C-Reativa/genética , Células COS , Cálcio/metabolismo , Bovinos , Chlorocebus aethiops , Complemento C3b/metabolismo , Fator H do Complemento/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/metabolismo , Lipoproteínas LDL/metabolismo , Ligação Proteica , Conformação Proteica , Soroalbumina Bovina/metabolismo
11.
Infect Immun ; 79(2): 724-31, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21134964

RESUMO

Activation of complement represents one means of natural resistance to infection from a wide variety of potential pathogens. Recently, properdin, a positive regulator of the alternative pathway of complement, has been shown to bind to surfaces and promote complement activation. Here we studied whether properdin-mediated complement activation occurs on the surface of Chlamydia pneumoniae, an obligate intracellular Gram-negative bacterium that causes 10 to 20% of community-acquired pneumonia. We have determined for the first time that the physiological P2, P3, and P4 forms of human properdin bind to the surface of Chlamydia pneumoniae directly. The binding of these physiological forms accelerates complement activation on the Chlamydia pneumoniae surface, as measured by C3b and C9 deposition. Finally, properdin-depleted serum could not control Chlamydia pneumoniae infection of HEp-2 cells compared with normal human serum. However, after addition of native properdin, the properdin-depleted serum recovered the ability to control the infection. Altogether, our data suggest that properdin is a pattern recognition molecule that plays a role in resistance to Chlamydia infection.


Assuntos
Infecções por Chlamydophila/imunologia , Chlamydophila pneumoniae/metabolismo , Ativação do Complemento/fisiologia , Complemento C9/imunologia , Properdina/metabolismo , Anticorpos Antibacterianos/sangue , Linhagem Celular , Chlamydophila pneumoniae/imunologia , Humanos
12.
Kidney Int ; 80(2): 165-73, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21544060

RESUMO

Factor H is a regulator of the alternative pathway of complement, and genetic studies have shown that patients with mutations in factor H are at increased risk for several types of renal disease. Pathogenic activation of the alternative pathway in acquired diseases, such as ischemic acute kidney injury, suggests that native factor H has a limited capacity to control the alternative pathway in the kidney. Here we found that an absolute deficiency of factor H produced by gene deletion prevented complement activation on tubulointerstitial cells after ischemia/reperfusion (I/R) injury, likely because alternative pathway proteins were consumed in the fluid phase. In contrast, when fluid-phase regulation by factor H was maintained while the interaction of factor H with cell surfaces was blocked by a recombinant inhibitor protein, complement activation after renal I/R increased. Finally, a recombinant form of factor H, specifically targeted to sites of C3 deposition, reduced complement activation in the tubulointerstitium after ischemic injury. Thus, although factor H does not fully prevent activation of the alternative pathway of complement on ischemic tubules, its interaction with the tubule epithelial cell surface is critical for limiting complement activation and attenuating renal injury after ischemia.


Assuntos
Ativação do Complemento , Fator H do Complemento/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais/patologia , Traumatismo por Reperfusão/imunologia , Animais , Via Alternativa do Complemento , Líquido Extracelular/imunologia , Camundongos , Ligação Proteica
13.
J Immunol ; 182(2): 1061-8, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19124749

RESUMO

Factor H is the primary soluble regulator of activation of the alternative pathway of complement. It prevents activation of complement on host cells and tissues upon association with C3b and surface polyanions such as sialic acids, heparin, and other glycosaminoglycans. Here we show that interaction with polyanions causes self-association forming tetramers of the 155,000 Da glycosylated protein. Monomeric human factor H is an extended flexible protein that exhibits an apparent size of 330,000 Da, relative to globular standards, during gel filtration chromatography in the absence of polyanions. In the presence of dextran sulfate (5000 Da) or heparin an intermediate species of apparent m.w. 700,000 and a limit species of m.w. 1,400,000 were observed by gel filtration. Sedimentation equilibrium analysis by analytical ultracentrifugation indicated a monomer Mr of 163,000 in the absence of polyanions and a Mr of 607,000, corresponding to a tetramer, in the presence of less than a 2-fold molar excess of dextran sulfate. Increasing concentrations of dextran sulfate increased binding of factor H to zymosan-C3b 4.5-fold. This result was accompanied by an increase in both the decay accelerating and cofactor activity of factor H on these cells. An expressed fragment encompassing the C-terminal polyanion binding site (complement control protein domains 18-20) also exhibited polyanion-induced self-association, suggesting that the C-terminal ends of factor H mediate self-association. The results suggest that recognition of polyanionic markers on host cells and tissues by factor H, and the resulting regulation of complement activation, may involve formation of dimers and tetramers of factor H.


Assuntos
Polímeros/química , Ânions/química , Ânions/metabolismo , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Cromatografia em Gel , Fator H do Complemento/biossíntese , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Sulfato de Dextrana/química , Dimerização , Regulação da Expressão Gênica/imunologia , Humanos , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/fisiologia , Polieletrólitos , Polímeros/metabolismo , Estrutura Terciária de Proteína/genética , Termodinâmica
14.
J Immunol ; 182(11): 7009-18, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19454698

RESUMO

Factor H (fH) is essential for complement homeostasis in fluid-phase and on surfaces. Its two C-terminal domains (CCP 19-20) anchor fH to self-surfaces where it prevents C3b amplification in a process requiring its N-terminal four domains. In atypical hemolytic uremic syndrome (aHUS), mutations clustering toward the C terminus of fH may disrupt interactions with surface-associated C3b or polyanions and thereby diminish the ability of fH to regulate complement. To test this, we compared a recombinant protein encompassing CCP 19-20 with 16 mutants. The mutations had only very limited and localized effects on protein structure. Although we found four aHUS-linked fH mutations that decreased binding to C3b and/or to heparin (a model compound for cell surface polyanionic carbohydrates), we identified five aHUS-associated mutants with increased affinity for either or both ligands. Strikingly, these variable affinities for the individual ligands did not correlate with the extent to which all the aHUS-associated mutants were found to be impaired in a more physiological assay that measured their ability to inhibit cell surface complement functions of full-length fH. Taken together, our data suggest that disruption of a complex fH-self-surface recognition process, involving a balance of affinities for protein and physiological carbohydrate ligands, predisposes to aHUS.


Assuntos
Complemento C3b/metabolismo , Fator H do Complemento/metabolismo , Eritrócitos/imunologia , Síndrome Hemolítico-Urêmica/genética , Heparina/metabolismo , Mutação , Animais , Células Cultivadas , Fator H do Complemento/genética , Eritrócitos/patologia , Predisposição Genética para Doença , Síndrome Hemolítico-Urêmica/imunologia , Síndrome Hemolítico-Urêmica/patologia , Humanos , Polieletrólitos , Polímeros/metabolismo , Ligação Proteica/genética , Ovinos
15.
J Biol Chem ; 284(25): 16939-16947, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19386604

RESUMO

Uncontrolled activation of the alternative pathway of complement is thought to be associated with age-related macular degeneration (AMD). The alternative pathway is continuously activated in the fluid phase, and tissue surfaces require continuous complement inhibition to prevent spontaneous autologous tissue injury. Here, we examined the effects of oxidative stress on the ability of immortalized human retinal pigment epithelial cells (ARPE-19) to regulate complement activation on their cell surface. Combined treatment with H(2)O(2) (to induce oxidative stress) and complement-sufficient serum was found to disrupt the barrier function of stable ARPE-19 monolayers as determined by transepithelial resistance (TER) measurements. Neither treatment alone had any effect. TER reduction was correlated with increased cell surface deposition of C3, and could be prevented by using C7-depleted serum, an essential component of the terminal complement pathway. Treatment with H(2)O(2) reduced surface expression of the complement inhibitors DAF, CD55, and CD59, and impaired regulation at the cell surface by factor H present within the serum. Combined treatment of the monolayers with H(2)O(2) and serum elicited polarized secretion of vascular epidermal growth factor (VEGF). Both, secretion of VEGF and TER reduction could be attenuated using either an alternative pathway inhibitor or by blocking VEGF receptor-1/2 signaling. Regarded together, these studies demonstrate that oxidative stress reduces regulation of complement on the surface of ARPE-19 cells, increasing complement activation. This sublytic activation results in VEGF release, which mediates disruption of the cell monolayer. These findings link oxidative stress, complement activation, and apical VEGF release, which have all been associated with the pathogenesis of AMD.


Assuntos
Proteínas do Sistema Complemento/metabolismo , Epitélio Pigmentado da Retina/lesões , Epitélio Pigmentado da Retina/metabolismo , Antígenos CD55/metabolismo , Antígenos CD59/metabolismo , Linhagem Celular , Fator H do Complemento/metabolismo , Via Alternativa do Complemento , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Humanos , Degeneração Macular/etiologia , Degeneração Macular/imunologia , Degeneração Macular/metabolismo , Estresse Oxidativo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Adv Exp Med Biol ; 703: 137-49, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20711712

RESUMO

Genetic variations in complement factor H (fH), an inhibitor of the complement alternative pathway (CAP), and oxidative stress are associated with age-related macular degeneration (AMD). Recently, novel complement therapeutics have been created with the capacity to be "targeted" to sites of complement activation. One example is our recombinant form of fH, CR2-fH, which consists of the N-terminus of mouse fH that contains the CAP-inhibitory domain, linked to a complement receptor 2 (CR2) targeting fragment that binds complement activation products. CR2-fH was investigated in vivo in the mouse model of choroidal neovascularization (CNV) and in vitro in oxidatively stressed RPE cell monolayers. RPE deterioration and CNV development were found to require CAP activation, and specific CAP inhibition by CR2-fH reduced the loss of RPE integrity and angiogenesis in CNV. In both the in vivo and in vitro paradigm of RPE damage, a model requiring molecular events known to be involved in AMD, complement-dependent VEGF production, was confirmed. These data may open new avenues for AMD treatment strategies.


Assuntos
Neovascularização de Coroide/tratamento farmacológico , Inativadores do Complemento/farmacologia , Via Alternativa do Complemento/efeitos dos fármacos , Degeneração Macular/tratamento farmacológico , Epitélio Pigmentado da Retina/efeitos dos fármacos , Animais , Linhagem Celular , Neovascularização de Coroide/imunologia , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Humanos , Técnicas In Vitro , Degeneração Macular/imunologia , Degeneração Macular/patologia , Camundongos , Modelos Biológicos , Estresse Oxidativo , Epitélio Pigmentado da Retina/imunologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Fator A de Crescimento do Endotélio Vascular/biossíntese
17.
Toxicon ; 184: 68-77, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32526239

RESUMO

Cobra venom factor (CVF) is the complement-activating protein in cobra venom. CVF is a structural and functional analog of complement component C3. CVF, like C3b, forms a convertase with factor B. This bimolecular complex CVF, Bb is an enzyme that cleaves C3 and C5. However, CVF, Bb exhibits significantly different functional properties from C3b,Bb. Whereas both, CVF, Bb and C3b, Bb exhibit spontaneous decay-dissociation into the respective subunits, thereby eliminating the enzymatic activity, the CVF, Bb convertase is physico-chemically far more stable, decaying with a half-life that is more than two orders of magnitude slower than that of C3b,Bb. In addition, CVF, Bb is completely resistant to inactivation by Factors H and I. These two properties of CVF, Bb allow continuous activation of C3 and C5, and complement depletion in serum. In order to understand the structural basis for the physico-chemical stability of CVF,Bb, we have created recombinant hybrid proteins of CVF and human C3, based on structural differences between CVF and human C3b in the C-terminal C345C domain. Here we describe three human C3/CVF hybrid proteins which differ in only one, two, or five amino acid residues from earlier described hybrid proteins. In all three cases, the hybrid proteins containing CVF residues form more stable convertases, and exhibit stronger complement-depletion activity than hybrid proteins with human C3 residues. Three bonds between CVF residues and Factor Bb residues could be identified by crystallographic modeling that contribute to the greater stability of the convertases.


Assuntos
Convertases de Complemento C3-C5/química , Fator B do Complemento/química , Venenos Elapídicos/química , Animais , Complemento C3 , Fator H do Complemento , Humanos , Proteínas Recombinantes de Fusão
18.
Front Immunol ; 11: 1728, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849614

RESUMO

Factor H exists as a 155,000 dalton, extended protein composed of twenty small domains which is flexible enough that it folds back on itself. Factor H regulates complement activation through its interactions with C3b and polyanions. Three binding sites for C3b and multiple polyanion binding sites have been identified on Factor H. In intact Factor H these sites appear to act synergistically making their individual contributions difficult to distinguish. Recombinantly expressed fragments of human Factor H were examined using surface plasmon resonance (SPR) for interactions with C3, C3b, iC3b, C3c, and C3d. Eleven recombinant proteins of lengths from one to twenty domains were used to show that the three C3b-binding sites exhibit 100-fold different affinities for C3b. The N-terminal site [complement control protein (CCP) domains 1-6] bound C3b with a Kd of 0.08 µM and this interaction was not influenced by the presence or absence of domains 7 and 8. Full length Factor H similarly exhibited a Kd for C3b of 0.1 µM. Unexpectedly, the N-terminal site (CCP 1-6) bound native C3 with a Kd of 0.4 µM. The C-terminal domains (CCP 19-20) exhibited a Kd of 1.7 µM for C3b. We localized a weak third C3b binding site in the CCP 13-15 region with a Kd estimated to be ~15 µM. The C-terminal site (CCP 19-20) bound C3b, iC3b, and C3d equally well with a Kd of 1 to 2 µM. In order to identify and compare regions of Factor H that interact with polyanions a family of 18 overlapping three domain recombinant proteins spanning the entire length of Factor H were expressed and purified. Immobilized heparin was used as a model polyanion and SPR confirmed the presence of heparin binding sites in CCP 6-8 (Kd 1.2 µM) and in CCP 19-20 (4.9 µM) and suggested the existence of a weak third polyanion binding site in the center of Factor H (CCP 11-13). Our results unveil the relative contributions of different regions of Factor H to its regulation of complement, and may contribute to the understanding of how defects in certain Factor H domains lead to disease.


Assuntos
Complemento C3/metabolismo , Sítios de Ligação , Complemento C3/imunologia , Complemento C3b/metabolismo , Complemento C3d/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/imunologia , Fator H do Complemento/metabolismo , Via Alternativa do Complemento , Humanos , Imunidade Inata , Cinética , Ligantes , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
19.
Dev Comp Immunol ; 33(1): 105-16, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18760301

RESUMO

Cobra venom factor (CVF) is a structural and functional analog of complement C3 isolated from cobra venom. Both CVF and C3b can bind factor B and subsequently form the bimolecular C3/C5 convertases CVF,Bb or C3b,Bb, respectively. The two homologous enzymes exhibit several differences of which the difference in physico-chemical stability is most important, allowing continuous activation of C3 and C5 by CVF,Bb, leading to serum complement depletion. Here we describe the detailed functional properties of two hybrid proteins in which the 113 or 315 C-terminal residues of C3 were replaced with corresponding CVF sequences. Both hybrid proteins formed stable convertases that exhibited C3-cleaving activity, although at different rates. Neither convertase cleaved C5. Both convertases showed partial resistance to inactivation by factors H and I, allowing them to deplete complement in human serum. These data demonstrate that functionally important structural differences between CVF and C3 are located in the very C-terminal region of both homologous proteins, and that small substitutions in human C3 with homologous CVF sequence result in C3 derivatives with CVF-like functions. Such hybrid proteins are important tools to study the structure/function relationships in both C3 and CVF, and these "humanized CVF" proteins may become reagents for therapeutic complement depletion.


Assuntos
Complemento C3/química , Venenos Elapídicos/química , Animais , Clonagem Molecular , Complemento C3/genética , Convertases de Complemento C3-C5/química , Convertases de Complemento C3-C5/genética , Fator H do Complemento/química , Venenos Elapídicos/genética , Fibrinogênio/química , Hemólise , Humanos , Modelos Moleculares , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Ovinos
20.
Toxicon ; 167: 106-116, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31207349

RESUMO

Cobra venom factor (CVF) is the complement-activating protein in cobra venom. CVF is a structural and functional analog of complement component C3. CVF, like C3b, forms a convertase with factor B. This bimolecular complex CVF,Bb is an enzyme that cleaves C3 and C5. However, CVF,Bb exhibits significantly different functional properties from C3b,Bb. The CVF,Bb convertase is physico-chemically very stable, and completely resistant to an activation by Factors H and I. These two properties, in contrast to C3b,Bb, allow continuous activation of C3 and C5, and complement depletion in serum. In order to understand the structural basis for the functional differences between CVF and C3, we have created several hybrid proteins of CVF and human C3. Here we report that replacing the C-terminal 168 amino acid residues of human C3 with the corresponding residues from CVF results in a hybrid protein (HC3-1496) which is essentially a human C3 derivative exhibiting the functional properties of CVF. This result demonstrates that the important structures for the CVF-specific functions reside within the C-terminal 168 amino acid residues of CVF. We further demonstrate that reverting the 46 C-terminal CVF residues of HC3-1496 to human C3 sequence results in a hybrid protein (HC3-1496/1617) that exhibits a physico-chemically unstable convertase with only residual complement depleting activity. This result demonstrates that most, but not all, structural requirements for CVF activity reside within the 46 C-terminal amino acid residues. We also investigated the potential role of position 1633, which is an acidic residue in human C3 (glutamic acid) but a basic amino acid residue (histidine) in CVF. However, the charge at position 1633 appears to be of no functional relevance. Exchanging the neutral amino acids present in CVF at positions 1499 and 1501 with the two charged amino acids at these positions in human C3 (aspartic acid and lysine) resulted in a hybrid protein that exhibited significantly slower convertase formation although both binding to Factor B and C3 cleavage was not affected, demonstrating that the charged amino acid residues at these two positions interfere with the formation of the convertase. In conclusion, our work demonstrates that hybrid proteins of human C3 and CVF present valuable tools to identify functionally important amino acid residues in CVF.


Assuntos
Complemento C3/química , Venenos Elapídicos/química , Sequência de Aminoácidos , Humanos , Proteínas Recombinantes de Fusão/química , Análise de Sequência de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa