Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(8): 298, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980518

RESUMO

Grass carp intestinal waste-mediated biosynthesized nanosilver (AgNPs) was valorized using guaran and zeolite matrices, resulting in AgNPs-guaran, AgNPs-zeolite, and AgNPs-guaran -zeolite composites. The valorized products were examined using Environmental Scanning Electron Microscopy, Energy Dispersive X-ray analysis and X-ray Diffraction analysis to confirm uniform dispersion and entrapment of AgNPs within the matrixes. These valorized products were evaluated for their efficacy in detoxifying the ubiquitous and toxic hexavalent chromium (Cr6+) in aquatic environments, with Anabas testudineus exposed to 2 mg l-1 of Cr6+ for 60 days. Remarkable reduction of Cr6+ concentration to 0.86 ± 0.007 mg l-1 was achieved with AgNPs-guaran-zeolite composite, indicating successful reclamation of contaminated water and food safety assurance. Consistency in results was further corroborated by minimal stress-related alterations in fish physiological parameters and integrated biomarker response within the experimental group treated with the AgNPs-guaran-zeolite composite. Despite observed chromium accumulation in fish tissues, evidence of physiological stability was apparent, potentially attributable to trivalent chromium accumulation, serving as an essential nutrient for the fish. Additionally, the challenge study involving Anabas testudineus exposed to Aeromonas hydrophila exhibited the lowest cumulative mortality (11.11%) and highest survival rate (87.5%) within the same experimental group. The current study presents a novel approach encompassing the valorization of AgNPs for Cr6+ detoxification under neutral to alkaline pH conditions, offering a comprehensive framework for environmental remediation.


Assuntos
Biomarcadores , Cromo , Nanopartículas Metálicas , Prata , Poluentes Químicos da Água , Zeolitas , Animais , Cromo/química , Zeolitas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Prata/química , Prata/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Hidrogéis/química , Bioacumulação , Inativação Metabólica , Galactanos , Mananas , Gomas Vegetais
2.
Environ Res ; 235: 116648, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451582

RESUMO

The current study investigates the potential utilization of poultry intestines for the synthesis of stable silver nanoparticles (AgNPs) and their impact on fish physiology. The AgNPs were synthesized and characterized using various analytical techniques. The toxicity of AgNPs on Anabas testudineus was evaluated, determining a 96-h LC50 value of 25.46 mg l-1. Subsequently, fish were exposed to concentrations corresponding to 1/10th, 1/25th, 1/50th, and 1/100th of the estimated LC50 for a duration of 60 days in a sub-acute study. A comprehensive range of biomarkers, including haematological, serum, oxidative stress, and metabolizing markers, were analyzed to assess the physiological responses of the fish. Additionally, histopathological examinations were conducted, and the accumulation of silver in biomarker organs was measured. The results indicate that silver tends to bioaccumulate in all biomarker organs in a dose- and time-dependent manner, except for the muscle tissue, where accumulation initially increased and subsequently decreased, demonstrating the fish's inherent ability for natural attenuation. Analysis of physiological data and integrated biomarker responses reveal that concentrations of 1/10th, 1/25th, and 1/50th of the LC50 can induce stress in the fish, while exposure to 1/100th of the LC50 shows minimal to no stress response. Overall, this study provides valuable insights into the toxicity and physiological responses of fish exposed to poultry waste biosynthesized AgNPs, offering potential applications in aquaculture while harnessing their unique features.


Assuntos
Nanopartículas Metálicas , Animais , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Aves Domésticas , Peixes , Aquicultura , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa