Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(26)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38522107

RESUMO

Silicon carbide (SiC) is a wide-band gap semiconductor that exceeds other semiconducting materials (except diamond) in electrical, mechanical, chemical, and radiation stability. In this paper, we report a novel approach to fabrication of SiC nano films on a Si substrate, which is based on the endotaxial growth of a SiC crystalline phase in a graphite-like carbon (GLC) matrix. GLC films were formed by carbonization of rigid rod polyimide (PI) Langmuir-Blodgett (LB) films on a Si substrate at 1000 °C in vacuum. After rapid thermal annealing of GLC films at 1100 °C and 1200 °C, new types of heterostructures SiC(10 nm)/GLC(20 nm)/Si(111) and SiC(20 nm)/GLC(15 nm)/SiC(10 nm)/Si(111) were obtained. The SiC top layer was formed due to the Si-containing gas phase present above the surface of GLC film. An advantage of the proposed method of endotaxy is that the SiC crystalline phase is formed within the volume of the GLC film of a thickness predetermined by using PI LB films with different numbers of monolayers for carbonization. This approach allows growing SiC layers close to the 2D state, which is promising for optoelectronics, photovoltaics, spintronics.

2.
Phys Chem Chem Phys ; 24(44): 27558-27565, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36346380

RESUMO

Kynurenic acid (KNA) in the triplet state reacts with tryptophan (Trp) at neutral pH via proton-coupled electron transfer (PCET), which includes the stepwise transition of both electron and proton from Trp to triplet KNA. In the case of tyrosine (Tyr), the quenching reaction is H-transfer, a simultaneous transfer of electron and proton. In this work, we used the time-resolved chemically induced dynamic nuclear polarization (TR CIDNP) method to unveil the sites of H/H+ transfer within KNA. For this purpose, we obtained the values of 1H hyperfine coupling constants (HFCCs) and g-factors for different tautomeric forms of KNA radicals by the DFT method, then calculated CIDNP intensities using these g-factors and HFCCs according to the Adrian model. The calculated CIDNP intensities for different protons were correlated with their CIDNP intensities in the geminate spectra detected in the photoreactions of KNA with Trp, N-acetyl Trp, and N-acetyl Tyr. Best-fit proportionality relationships between calculated and experimental CIDNP intensities have shown that the KNA anion radical is present in two of the three possible tautomeric forms, which result from the H/H+ movement to the carbonyl oxygen of keto- and oxo-quinolinate forms of KNA, without any visible contribution of the H/H+ transfer to the nitrogen of the enol form. For 4-hydroxyquinoline (4HQN), being the chromophoric core of KNA and exhibiting the same PCET and H-transfer reactions with Trp and Tyr, a single possible tautomeric form of its radical has been revealed as H/H+ transfer to the carbonyl oxygen of the keto-form.


Assuntos
Ácido Cinurênico , Triptofano , Prótons , Tirosina , Elétrons
3.
J Chem Phys ; 152(1): 014203, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914738

RESUMO

Previous transient absorption measurements using the magnetically affected reaction yield (MARY) technique for a series of rigidly linked electron donor/electron acceptor dyads (D-X-A) consisting of a triarylamine donor, a naphthalene diimide acceptor, and a meta-conjugated diethynylbenzene unit as a bridge had revealed the presence of electronic exchange interaction, J, in the photoexcited charge separated (CS) state. Here, we present results obtained by photochemically induced dynamic nuclear polarization (photo-CIDNP) that allows for determining the sign of J. By variation of the magnetic field from 1 mT to 9.4 T, pronounced absorptive maxima of CIDNP were detected for more than 20 1H nuclei disregarding the sign of their hyperfine coupling constants in the transient charge separated state, with positions of maxima close to those found by the MARY technique. Quantitative comparison of the observed CIDNP signals for various D-X-A dyads reveals an increase in the CIDNP enhancement factor with increasing population of the triplet state determined by MARY spectroscopy at zero magnetic field. For CIDNP of the methyl groups of the TAA donor dyads, we found in all studies a good linear dependence between the CIDNP signal amplitude and the initial population of the CS triplet state. The linear relationship together with the absorptive CIDNP allows us to conclude that (i) the sign of the electronic exchange interaction Jex is positive, (ii) CIDNP is formed predominantly in the vicinity of level anticrossing between the T+ and S electronic levels, and (iii) coherent triplet-singlet transitions are induced by hyperfine interaction and accompanied by simultaneous electron and nuclear spin flip, T+ß→Sα.

4.
Chemphyschem ; 20(5): 766-772, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30600920

RESUMO

A study of long-lived spin order in chlorothiophene carboxylates at both high and low magnetic fields is presented. Careful sample preparation (removal of dissolved oxygen in solution, chelating of paramagnetic impurities, reduction of convection) allows one to obtain very long-lived singlet order of the two coupled protons in chlorothiophene derivatives, having lifetimes of about 130 s in D2 O and 240 s in deuterated methanol, which are much longer than the T1 -relaxation times (18 and 30 s, respectively, at a field B 0 =9.4 T). In protonated solvents the relaxation times become shorter, but the lifetime is still substantially longer than T 1 . In addition, long-lived coherences are shown to have lifetimes as long as 30 s. Thiophene derivatives can be used as molecular tags to study slow transport, slow dynamics and slow chemical processes, as has been shown in recent years.

5.
Phys Chem Chem Phys ; 20(32): 21127-21135, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30079421

RESUMO

Hyperfine coupling constants (HFCCs) of the short-lived radicals of 4-carboxy, 4,4'-dicarboxy, and 3,3',4,4'-tetracarboxy benzophenones (4-CBP, DCBP, and TCBP, respectively) formed in their photoreaction with tyrosine were obtained from analysis of geminate CIDNP spectra. These HFCCs were compared to HFCCs calculated using density functional theory. From this comparison, it was established that the CIDNP pattern of TCBP originates from contributions of three types of TCBP radical structures: the non-protonated anion radical and two anion radical structures with a protonated carboxylic group at position 3 or 4 (or 3' or 4'). This allowed us to conclude that the mechanism of the quenching reaction is proton coupled electron transfer (PCET): electron transfer is followed by proton transfer to one of four possible positions with similar probabilities. The same CIDNP pattern and therefore the same reaction mechanism was established for histidine. For 4-CBP and DCBP, triplet quenching proceeds also via PCET, again with formation of the anion radical with a protonated carboxylic group.

6.
Magn Reson (Gott) ; 2(1): 139-148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37904760

RESUMO

Flavin adenine dinucleotide (FAD) is an important cofactor in many light-sensitive enzymes. The role of the adenine moiety of FAD in light-induced electron transfer was obscured, because it involves an adenine radical, which is short-lived with a weak chromophore. However, an intramolecular electron transfer from adenine to flavin was revealed several years ago by Robert Kaptein by using chemically induced dynamic nuclear polarization (CIDNP). The question of whether one or two types of biradicals of FAD in aqueous solution are formed stays unresolved so far. In the present work, we revisited the CIDNP study of FAD using a robust mechanical sample shuttling setup covering a wide magnetic field range with sample illumination by a light-emitting diode. Also, a cost efficient fast field cycling apparatus with high spectral resolution detection up to 16.4 T for nuclear magnetic relaxation dispersion studies was built based on a 700 MHz NMR spectrometer. Site-specific proton relaxation dispersion data for FAD show a strong restriction of the relative motion of its isoalloxazine and adenine rings with coincident correlation times for adenine, flavin, and their ribityl phosphate linker. This finding is consistent with the assumption that the molecular structure of FAD is rigid and compact. The structure with close proximity of the isoalloxazine and purine moieties is favorable for reversible light-induced intramolecular electron transfer from adenine to triplet excited flavin with formation of a transient spin-correlated triplet biradical F⚫--A⚫+. Spin-selective recombination of the biradical leads to the formation of CIDNP with a common emissive maximum at 4.0 mT detected for adenine and flavin protons. Careful correction of the CIDNP data for relaxation losses during sample shuttling shows that only a single maximum of CIDNP is formed in the magnetic field range from 0.1 mT to 9 T; thus, only one type of FAD biradical is detectable. Modeling of the CIDNP field dependence provides good agreement with the experimental data for a normal distance distribution between the two radical centers around 0.89 nm and an effective electron exchange interaction of -2.0 mT.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa