Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073528

RESUMO

This paper reports the influence of surface charge of the micelles on to the photophysical properties of a cinchonine dication (C2+) fluorophore in anionic, sodium dodecylsulphate (SDS), surfactant at premicellar, micellar and post-micellar concentrations in aqueous phase at room temperature. The magnitude of edge excitation red shift (EERS) in the fluorescence maximum of C2+ in bulk water solution is 1897 cm- 1 whereas, in the case of SDS it is observed to be 1984 cm- 1. The fluorescence decay curve of C2+ fits with multi exponential functions in the micellar system. The increase in lifetime of C2+ in SDS has been attributed to the increase in radiative rate due to the incorporation of C2+ at the micelle -water interface. The value of dynamic quenching constant determined is 16.9 M- 1. The location of the probe molecule in micellar systems has been justified by a variety of spectral parameters such as dielectric constant, ET (30), viscosity, EERS, average fluorescence decay time, radiative and non-radiative rate constants. All experimental results suggest that the C2+ molecule binds strongly with the SDS micelles and resides at micellar-water interface. The binding constant (Kb) calculated (3.85 × 105 M- 1) for C2+ in SDS revealed that the electrostatic forces mediate charge probe-micelle association.

2.
J Phys Chem A ; 120(33): 6563-74, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27486828

RESUMO

The effect of solvent polarity and micellar headgroup on a newly designed imidazolium based ionic liquid (IL) conjugated with naphthalene, 1,2-dimethyl-3-((6-(octyloxy)naphthalen-2-yl)methyl)-1H-imidazol-3-ium chloride (IN-O8-Cl), was studied using steady state and time-resolved fluorescence techniques. We observed that the dipole moment in the excited state is remarkably higher than the ground state. The effect of micellar surface charge on the photophysics of IN-O8-Cl in aqueous phase at room temperature was investigated. Formation of premicellar aggregates in sodium dodecylsulfate (SDS) was perceived; further the microenvironment of IN-O8-Cl was examined using steady-state fluorescence spectroscopy. Micropolarity of the micellar environment of SDS was found to be lower than that of cetyltrimethylammonium bromide (CTAB) and triton X-100 (TX100) following the order SDS < TX-100 < CTAB. The binding constant (Kb) and edge excitation red shift (EERS) from the emission maximum suggest that the probe binds strongly to the micelles. Multiexponential behavior was observed in time-resolved fluorescence lifetime studies in all micellar environments. We have observed an increase in rotational correlation time as we move from pure aqueous phase to solution containing surfactants of different head charge. Varieties of spectral parameters were used to justify the region in which the probe is present. The experimentally obtained dipole moment data were justified and explained by the DFT calculations of the electronic properties of IN-O8-Cl molecules in gas phase and in selected solvents.


Assuntos
Imidazóis/química , Líquidos Iônicos/química , Naftalenos/química , Teoria Quântica , Micelas , Solventes/química , Espectrometria de Fluorescência , Água/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-26775098

RESUMO

Interactions of different species of 6-methoxyquinoline (6MQ) with anionic micelles have been studied at different pre-micellar, micellar and post-micellar concentrations using steady state, time resolved fluorescence and fluorescence anisotropy techniques. The sensitivity of fluorescence of 6MQ to change in its local environment was used to probe sodium dodecylsulfate (SDS) micelles. At post-micellar concentrations of SDS, the observed blue shift in the fluorescence spectrum and increase in quantum yield are attributed to the incorporation of solute molecule to micelles. 6MQ has been found to bind to the surface of the anionic micelles instead of penetrating inside the core of micelles. The binding constant (Kb) calculated for 6MQ revealed that the electrostatic forces mediate charged probe-micelle association, whereas, hydrophobic interaction allowed neutral 6MQ to associate with SDS micelles. The charged 6MQ gets inserted deeper into the micelle surface than its neutral form. The fluorescence anisotropy decay of 6MQ in SDS micelles studied at different pH allowed determination of restriction of motion of the fluorophore. The location of the probe molecule in micellar systems is justified by a variety of spectral parameters such as refractive index, dielectric constant, ET(30), average fluorescence decay time, radiative and non-radiative rate constants, and rotational relaxation time. The micro-environment around the fluorophore reveals that the photophysics of 6MQ is very sensitive to the microenvironment of SDS and probe molecules reside at the water-micelle interface.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25863459

RESUMO

Photophysical behavior and rotational relaxation dynamics of quinine sulfate (QS) in anionic surfactant, sodium dodecylsulfate (SDS) at different pH have been studied using steady state and time resolved fluorescence spectroscopy. It has been observed that the cationic form of quinine sulfate (at pH 2) forms a fluorescent ion pair complex with the surfactant molecules at lower concentrations of surfactant. However, for higher concentrations of SDS, the probe molecules bind strongly with the micelles and reside at the water-micelle interface. At pH 7, QS is singly protonated in bulk aqueous solution. At lower concentrations of SDS aggregation between probe and surfactant molecules has been observed. However, for higher concentrations of SDS, an additional fluorescence peak corresponding to dicationic form of QS appears and this has been attributed to double protonation of the QS molecule in micellar solution. At pH 7, in the presence of SDS micelles, the photophysical properties of QS showed substantial changes compared to that in the bulk water solution. At pH 12, an increase in fluorescence intensity and lifetime has been observed and this has been attributed to the increase in radiative rate due to the incorporation of QS at the micelle-water interface. The local pH at micellar surface has been found different from the pH of bulk solution.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 138: 818-26, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25434640

RESUMO

The excited state dynamic studies have been carried out to investigate the effects of micellar surface charge on the photophysics of protonated 6-methoxyquinoline (6MQ(+)) in anionic, sodium dodecylsulphate (SDS), cationic, cetyltrimethylammonium bromide (CTAB) and neutral, triton X-100 (TX100) surfactant at premicellar, micellar and postmicellar concentrations in aqueous phase at room temperature. At premicellar concentrations of SDS, there is a slight decrease in emission intensity and at micellar and postmicellar concentrations, increase in emission intensity and blue shift of spectrum has been observed. The blue shift in fluorescence spectrum and slight increase in quantum yield are attributed to incorporation of solute molecule to the micelles. Edge excitation red shift (EERS) in fluorescence maximum of 6MQ(+) has been observed in all the surfactant solutions studied. The EERS has been ascribed in terms of solvent relaxation process. In SDS surfactant system, due to heterogeneous restricted motion of solvent molecules, the solvent viscosity increases which results in an increase in net magnitude of EERS. The fluorescence decay components of 6MQ(+) fit with multi exponential functions in all the micellar systems studied. The location of the probe molecule in micellar systems is justified by a variety of spectral parameters such as refractive index, dielectric constant, ET (30), EERS, average fluorescence decay time, radiative and non radiative rate constants, and rotational relaxation time.


Assuntos
Micelas , Nanopartículas/química , Tamanho da Partícula , Prótons , Quinolinas/química , Tensoativos/química , Anisotropia , Cetrimônio , Compostos de Cetrimônio/química , Eletricidade , Corantes Fluorescentes/química , Íons , Octoxinol/química , Teoria Quântica , Refratometria , Dodecilsulfato de Sódio/química , Solventes/química , Espectrometria de Fluorescência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa