Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36829537

RESUMO

Microplastics (MPs) have even been detected in remote environments, including high-latitude regions, where human activities are restricted or strongly limited. We investigated the surface water of the bays of the Barents Sea and the freshwater lakes that are located close to and several kilometers from a year-round resident field station in the remote tundra region of the Kola Peninsula. The microplastics' presence in aquatic environments in this region has not been indicated yet. Microplastics were detected in all samples collected from the Barents Sea (<4800 items·m-3) and the lakes (<3900 items·m-3). Fibers made from polyethylene terephthalate (PET)-the most common thermoplastic polymer of the polyester family-and semi-synthetic cellulosic rayon were the most dominant. This indicated that the source of fiber contamination may come from protective clothes, ropes, ship equipment, and fishing nets. Small microplastics can spread through current and atmospheric transport. The Norwegian Current is likely responsible for the lack of correlations found between MP contamination and the distance from the field station between the studied bays of the Barents Sea. On the contrary, a significant correlation with human presence was observed in the concentration of microfibers in the water of the tundra lakes. The number of MP fibers decreased with an increase in the distance from the field station. This is the first study, to the best of our knowledge, that reports such a correlation in a remote region. We also discuss implications for animals. Our results show that even the most isolated ecosystems are not free from microplastic pollution.

2.
Animals (Basel) ; 13(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37508097

RESUMO

The continental shelf of the northeastern Barents Sea is presently experiencing a weak influx of Atlantic water from the west. In recent times, warming in Arctic regions has led to an increase in extended ice-free periods in this area, instead of significantly elevating water temperatures. The implications of this phenomenon on the structure and functioning of benthic communities were investigated during the autumn of 2019 within the Makarov Strait, located in the southwestern part of the St. Anna Trough. The macrozoobenthic communities exhibited a clear connection with the duration of ice-free periods. This variable influenced a vertical carbon flux, which subsequently served as the primary predictor for faunal abundance and diversity, as demonstrated by redundancy and correlation analyses. Two faunal groups were identified, corresponding to short and long open-water periods. Both groups had similar alpha diversity (65 ± 6 and 61 ± 9 species per station) and biomasses (39 ± 13 and 47 ± 13 g m-2) but displayed differing abundances (1140 ± 100 vs. 4070 ± 790 ind. m-2) and other diversity indices. We observed a decline in the proportion of polychaetes, accompanied by an increase in the proportion and diversity of bivalves, as well as a rise in the abundance of infaunal species, sub-surface deposit feeders, and mobile suspension feeders, in response to the increasing vertical carbon flux. The potential increase in anthropogenic pressures related to oil development in the northeastern Barents Sea highlights the importance of our study for conservation and monitoring efforts in the region.

3.
Biology (Basel) ; 10(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206697

RESUMO

Macroalgae debris accumulated onshore function as points of interaction between marine and terrestrial ecological systems, but knowledge of the importance of detritivores facilitating the introduction of organic matter via the detritus pathway into neighbouring ecosystems, is still poorly understood. In particular, not much is known about biodiversity patterns and the colonisation of macroalgal debris by terrestrial, detritivorous soil microarthropods in the harsh environmental conditions in the subpolar Arctic region. We hypothesised that (i) soil microarthropods of the coastal tundra, including Collembola, can cross the ecosystem boundary and colonise decaying and freshly exposed macroalgae; and (ii) various inundation regimes by sea water, microhabitat stability and decaying of macroalgae drive distribution patterns of collembolan species. Our results suggest that environmental filtering influences collembolan species' distributions across the examined gradient and induces sorting of species according to their functional traits, including dispersal ability, resistance to disturbance and environmental tolerance.

4.
Biology (Basel) ; 10(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499232

RESUMO

Phylogenetic analyses based on mitochondrial 16S rDNA, nuclear 28S rDNA, and morphological and ecological traits of Aulactinia, Urticina and Cribrinopsis sea anemones inhabiting the Arctic-boreal region indicate discordances between trees derived from molecular sequences and those based on morphological traits. Nuclear genes were more informative than mitochondrial and morphological datasets. Our findings indicate that 16S rDNA has limited applicability for phylogenetic analyses at lower taxonomic levels and can only be used for distinction of families. Although 28S rDNA allowed for the classification of distinct genera, it could not confirm that species of Urticina and Cribrinopsis, which appeared to be closely related, were correctly separated into two different genera. The nuclear tree revealed inconsistencies between specimens belonging to European Urticina crassicornis and Pacific U. crassicornis; the latter seems to be a different species. In contrast to Pacific U. crassicornis, the specimens collected from different localities in the Barents Sea are on the same tree branch. The same was observed for specimens of Aulactinia stella. Both species brood their young internally. The dispersal of sea anemones with brooding juveniles seems to be less limited than expected and might be sufficient to settle habitats more than a thousand kilometers away.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa