Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(8)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39194466

RESUMO

The mimesis of biological mechanisms by artificial devices constitutes the modern, rapidly expanding, multidisciplinary biomimetics sector. In the broader bioinspiration perspective, however, bioarchitectures may perform independent functions without necessarily mimicking their biological generators. In this paper, we explore such Bioarchitectonic notions and demonstrate three-dimensional photonics by the exact replication of insect organs using ultra-porous silica aerogels. The subsequent conformal systolic transformation yields their miniaturized affine 'clones' having higher mass density and refractive index. Focusing on the paradigms of ommatidia, the compound eye of the hornet Vespa crabro flavofasciata and the microtrichia of the scarab Protaetia cuprea phoebe, we fabricate their aerogel replicas and derivative clones and investigate their photonic functionalities. Ultralight aerogel microlens arrays are proven to be functional photonic devices having a focal length f ~ 1000 µm and f-number f/30 in the visible spectrum. Stepwise systolic transformation yields denser and affine functional elements, ultimately fused silica clones, exhibiting strong focusing properties due to their very short focal length of f ~ 35 µm and f/3.5. The fabricated transparent aerogel and xerogel replicas of microtrichia demonstrate a remarkable optical waveguiding performance, delivering light to their sub-100 nm nanotips. Dense fused silica conical clones deliver light through sub-50 nm nanotips, enabling nanoscale light-matter interactions. Super-resolution bioarchitectonics offers new and alternative tools and promises novel developments and applications in nanophotonics and other nanotechnology sectors.

2.
Nanomaterials (Basel) ; 10(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287194

RESUMO

Systolic nanofabrication is demonstrated via conformal downsizing of three-dimensional micropatterned monolithic master-casts made of extremely nanoporous aerogel and xerogel materials. The porous solid skeleton collapses by thermal treatment, generating miniaturized replicas, which preserve the original stereometric forms and incorporate minified nanoscale patterns. Paradigmatic holographic and biomimetic nanoarchitectures are conformally downsized by ~4×, yielding subwavelength surface features of less than ~150 nm. The operations demonstrate the super-resolution capabilities of this alternative concept and its potential evolution to an innovative nanotechnology of the future.

3.
Nanomaterials (Basel) ; 11(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375563

RESUMO

Pulsed laser deposition on 3-dimensional micro-objects of complex morphology is demonstrated by the paradigmatic growth of cellulose and polymer/Y3Al5O12:Ce phosphor composite nanolayers. Congruent materials transfer is a result of multicomponent ablation performed by relatively low fluence (<200 mJ cm-2) ArF excimer laser pulses (λ = 193 nm). Films grown on optical and engineering components, having a thickness from ~50 nm to more than ~300 nm, are durable, well adherent and maintain the structural and functional properties of the parent solids. The results verify the unique capabilities of deep-ultraviolet pulsed laser deposition of novel functional nanostructures on arbitrary surface morphologies and highlight its potential in future 3-dimensional nanotechnologies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa