Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Learn Mem ; 136: 183-188, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27746379

RESUMO

The hypothalamic hypocretin/orexin (HO) system holds a central role in the regulation of several physiological functions critical for food-seeking behavior including mnemonic processes for effective foraging behavior. It is unclear however whether physiological increases in HO neuronal activity can support such processes. Using a designer rM3Ds receptor activation approach increasing HO neuronal activity resulted in improved short-term memory for novel locations. When tested on a non-spatial novelty object recognition task no significant difference was detected between groups indicating that hypothalamic HO neuronal activation can selectively facilitate short-term spatial memory for potentially supporting memory for locations during active exploration.


Assuntos
Hipotálamo/fisiologia , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Orexinas/fisiologia , Reconhecimento Psicológico/fisiologia , Memória Espacial/fisiologia , Animais , Comportamento Animal/fisiologia , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Orexinas/metabolismo
2.
J Alzheimers Dis ; 60(2): 593-604, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28869464

RESUMO

Alterations in tau synaptic distribution are considered to underlie synaptic dysfunction observed in Alzheimer's disease (AD). In the present study, brain blood hypoperfusion was simulated in mouse brain slices, and tau levels and phosphorylation were investigated in total extracts, as well as in postsynaptic density fractions (PSDs) and non-PSDs obtained through differential extraction and centrifugation. Oxygen deprivation (OD) resulted in tau dephosphorylation at several AD-related residues and activation of GSK3ß and phosphatase PP2A. On the contrary, glucose deprivation (GD) did not affect total levels of cellular tau or its phosphorylation despite inactivation of GSK3ß. However, tau distribution in PSD and non-PSD fractions and the pattern of tau phosphorylation in these compartments is highly complex. In PSDs, tau was increased under GD conditions and decreased under OD conditions. GD resulted in tau dephosphorylation at Ser199, Ser262, and Ser396 while OD resulted in tau hyperphosphorylation at Ser199 and Ser404. In the non-PSD fraction, GD or OD resulted in lower levels of tau, but the phosphorylation status of tau was differentially affected. In GD conditions, tau was found dephosphorylated at Ser199, Thr205, and Ser404 and hyperphosphorylated at Ser262. However, in OD conditions tau was found hyperphosphorylated at Thr205, SerSer356, Ser396, and Ser404. Combined OD and GD resulted in degradation of cellular tau and dephosphorylation of PSD tau at Ser396 and Ser404. These results indicate that oxygen deprivation causes dephosphorylation of tau, while GD and OD differentially affect distribution of total tau and tau phosphorylation variants in neuronal compartments by activating different mechanisms.


Assuntos
Glucose/deficiência , Hipóxia/patologia , Neurônios/citologia , Sinapses/metabolismo , Proteínas tau/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Glucose/farmacologia , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Serina/metabolismo , Frações Subcelulares , Sinapses/efeitos dos fármacos
3.
eNeuro ; 4(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28497110

RESUMO

Satiety, rather than all or none, can instead be viewed as a cumulative decrease in the drive to eat that develops over the course of a meal. The nucleus accumbens (NAc) is known to play a critical role in this type of value reappraisal, but the underlying circuits that influence such processes are unclear. Although NAc cholinergic interneurons (CINs) comprise only a small proportion of NAc neurons, their local impact on reward-based processes provides a candidate cell population for investigating the neural underpinnings of satiety. The present research therefore aimed to determine the role of NAc-CINs in motivation for food reinforcers in relation to satiety signaling. Through bidirectional control of CIN activity in mice, we show that when motivated by food restriction, increasing CIN activity led to a reduction in palatable food consumption while reducing CIN excitability enhanced food intake. These activity-dependent changes developed only late in the session and were unlikely to be driven by the innate reinforcer strength, suggesting that CIN modulation was instead impacting the cumulative change in motivation underlying satiety signaling. We propose that on a circuit level, an overall increase in inhibitory tone onto NAc output neurons played a role in the behavioral results, as activating NAc-CINs led to an inhibition of medium spiny neurons that was dependent on nicotinic receptor activation. Our results reveal an important role for NAc-CINs in controlling motivation for food intake and additionally provide a circuit-level framework for investigating the endogenous cholinergic circuits that signal satiety.


Assuntos
Neurônios Colinérgicos/fisiologia , Interneurônios/fisiologia , Motivação/fisiologia , Recompensa , Animais , Colinérgicos/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Interneurônios/efeitos dos fármacos , Camundongos Transgênicos , Núcleo Accumbens/fisiologia
4.
Front Pharmacol ; 6: 162, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300776

RESUMO

Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA) are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa