Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Angew Chem Int Ed Engl ; 63(21): e202401912, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38507522

RESUMO

The use of a dual resin for photobiocatalysis, encompassing both a photocatalyst and an immobilized enzyme, brings several challenges, including effective immobilization, maintaining photocatalyst and enzyme activity and ensuring sufficient light penetration. However, the benefits, such as integrated processes, reusability, easier product separation, and potential for scalability, can outweigh these challenges, making dual resin systems promising for efficient and sustainable photobiocatalytic applications. In this study, we employed a photosensitizer-containing porous emulsion-templated polymer as a functional support that is used to covalently anchor a chloroperoxidase from Curvularia inaequalis (CiVCPO). We demonstrate the versatility of this heterogeneous photobiocatalytic material, which enables the bromination of four aromatic substrates, including rutin-a natural occurring flavonol-under blue light (456 nm) irradiation and continuous flow conditions.

2.
Chembiochem ; 24(11): e202200723, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36892572

RESUMO

Protein bioinformatics has been applied to a myriad of opportunities in biocatalysis from enzyme engineering to enzyme discovery, but its application in enzyme immobilization is still very limited. Enzyme immobilization brings clear advantages in terms of sustainability and cost-efficiency but is still limited in its implementation. This, because it is a technique that remains tied to a quasi-blind protocol of trial and error, and therefore, is regarded as a time-intensive and costly approach. Here, we present the use of a set of bioinformatic tools to rationalize the results of protein immobilization that have been previously described. The study of proteins with these new tools allows the discovery of key driving forces in the process of immobilization that explain the obtained results, moving us a step closer to the final goal: predictive enzyme immobilization protocols.


Assuntos
Enzimas Imobilizadas , Enzimas Imobilizadas/metabolismo , Biocatálise
3.
Chemistry ; 29(47): e202301351, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37310888

RESUMO

The immobilization of copper-containing nitrite reductase (NiR) from Alcaligenes faecalis on functionalised multi-walled carbon nanotube (MWCNT) electrodes is reported. It is demonstrated that this immobilization is mainly driven by hydrophobic interactions, promoted by the modification of MWCNTs with adamantyl groups. Direct electrochemistry shows high bioelectrochemical reduction of nitrite at the redox potential of NiR with high current density of 1.41 mA cm-2 . Furthermore, the desymmetrization of the trimer upon immobilization induces an independent electrocatalytic behavior for each of the three enzyme subunits, corroborated by an electron-tunneling distance dependence.

4.
Org Biomol Chem ; 21(31): 6356-6359, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37486039

RESUMO

The development of a procedure for the one-pot synthesis of glycosyl benzoates directly from unprotected sugars in aqueous media using 2-chloro-1,3-dimethylimidazolium chloride (DMC), thiobenzoic acid, and triethylamine is reported. These glycosyl donors are excellent substrates for wild-type and mutant glycosidases. ß-Glucosyl benzoate was hydrolysed by the GH1 ß-glucosidase derived from Halothermothrix orenii (HorGH1). Subsequent use of this substrate in thioligase-mediated glycosylation of p-nitrothiophenol demonstrated their superiority as donors compared to their p-nitrophenol counterparts with excellent conversions. Using a series of arene nucleophiles, we also demonstrate good to excellent conversions (up to 94%) of ß-glucosyl benzoate to the corresponding p-nitrophenyl- and thioglycosides.


Assuntos
Benzoatos , Tioglicosídeos , Glicosídeo Hidrolases , Glicosilação
5.
Appl Microbiol Biotechnol ; 107(10): 3183-3190, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37052635

RESUMO

Extremophilic microorganisms, which are resistant to extreme levels of temperature, salinity, pH, etc., have become popular tools for biotechnological applications. Due to their availability and cost-efficacy, enzymes from extremophiles are getting the attention of researchers and industries in the field of biocatalysis to catalyze diverse chemical reactions in a selective and sustainable manner. In this mini-review, we discuss the advantages of Halomonas elongata as moderate halophilic bacteria to provide suitable enzymes for biotechnology. While enzymes from H. elongata are more resistant to the presence of salt compared to their mesophilic counterparts, they are also easier to produce in heterologous hosts compared with more extremophilic microorganisms. Herein, a set of different enzymes (hydrolases, transferases, and oxidoreductases) from H. elongata are showcased, highlighting their interesting properties as more efficient and sustainable biocatalysts. With this, we aim to improve the visibility of halotolerant enzymes and their uncommon properties to integrate biocatalysis in industrial set-ups. KEYPOINTS: • Production and use of halotolerant enzymes can be easier than strong halophilic ones. • Enzymes from halotolerant organisms are robust catalysts under harsh conditions. • Halomonas elongata has shown a broad enzyme toolbox with biotechnology applications.


Assuntos
Bactérias , Halomonas , Halomonas/genética , Archaea , Biotecnologia , Cloreto de Sódio , Enzimas
6.
Chimia (Aarau) ; 77(6): 390-394, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38047778

RESUMO

Enantioselectivity has always been a key feature of enzymatic synthesis. In some cases, when enzymes are not strictly enantioselective, by tuning the reaction conditions it is possible to induce an enantioselective switch. A transaminase from Halomonas elongata (ω-HeWT), while generally S-selective, could be shifted towards generating the R-enantiomer at higher concentrations of amino acceptor or ionic strength, for example. Other enzymes are reported to have a similar behavior, and here we discuss some of them and their potential applications.


Assuntos
Transaminases , Biocatálise , Estereoisomerismo
7.
Chimia (Aarau) ; 77(5): 307-311, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38047826

RESUMO

The move towards sustainable syntheses is a widespread effort which sees academia and industry developing new strategies and solutions. Flow chemistry, and in general the flow set up, with the compartmentalization of different steps in dedicated reactors, offers new possibility to integrate biocatalytic steps within a chemical cascade, often without the need to redesign the whole pathway. Here we report key examples in the field over the past few years.


Assuntos
Indústrias , Biocatálise
8.
Chembiochem ; 23(8): e202200108, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35189014

RESUMO

The synthesis of enantiopure chiral amines from racemic alcohols is a key transformation in the chemical industry, e. g., in the production of active pharmaceutical ingredients (APIs). However, this reaction remains challenging. In this work, we propose a one-pot enzymatic cascade for the direct conversion of a racemic alcohol into either (S)- or (R)-enantiomers of the corresponding amine, with in-situ cofactor recycling. This enzymatic cascade consists of two enantio-complementary alcohol dehydrogenases, both NADH and NADPH oxidase for in-situ recycling of NAD(P)+ cofactors, and either (S)- or (R)-enantioselective transaminase. This cell-free biocatalytic system has been successfully applied to the conversion of racemic 4-phenyl-2-butanol into the high value (S)- or (R)-enantiomers of the amine reaching good (73 % (S)) and excellent (>99 % (R)) enantioselectivities.


Assuntos
Aminas , Butanóis , 1-Butanol , Álcool Desidrogenase/metabolismo , Álcoois , Biocatálise , Estereoisomerismo
9.
Chembiochem ; 23(15): e202200335, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35705492

RESUMO

Enzymatic enantiopreference is one of the key advantages of biocatalysis. While exploring the synthesis of small cyclic (chiral amines) such as 3-aminotetrahydrofuran (THF-amine), using the (S)-selective transaminase from Halomonas elongata (HEwT), inversion of the enantiopreference was observed at increasing substrate loadings. In addition, the enantiopreference could be altered by variation of the ionic strength, or of the co-solvent content in the reaction mixture. For example, using otherwise identical reaction conditions, the presence of 2 M sodium chloride gave (R)-THF-amine (14 % ee), while the addition of 2.2 M isopropyl alcohol gave the (S)-enantiomer in 30 % ee. While the underlying cause is not currently understood, it appears likely that subtle changes in the structure of the enzyme cause the shift in enantiopreference and are worth exploring further.


Assuntos
Aminas , Halomonas , Aminas/química , Biocatálise , Estereoisomerismo , Especificidade por Substrato , Transaminases/metabolismo
10.
Chembiochem ; 23(21): e202200428, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36066500

RESUMO

Fusion enzymes are attractive tools for facilitating the assembly of biocatalytic cascades for chemical synthesis. This approach can offer great advantages for cooperative redox cascades that need the constant supply of a donor molecule. In this work, we have developed a self-sufficient bifunctional enzyme that can be coupled to transaminase-catalyzed reactions for the efficient recycling of the amino donor (L-alanine). By genetic fusion of an alanine dehydrogenase (AlaDH) and a formate dehydrogenase (FDH), a redox-complementary system was applied to recycle the amino donor and the cofactor (NADH), respectively. AlaDH and FDH were assembled in both combinations (FDH-AlaDH and AlaDH-FDH), with a 2.5-fold higher enzymatic activity of the latter system. Then, AlaDH-FDH was coupled to two different S-selective transaminases for the synthesis of vanillyl amine (10 mM) reaching up to 99 % conversion in 24 h in both cases. Finally, the multienzyme system was reused for at least 3 consecutive cycles when implemented in dialysis-assisted biotransformations.


Assuntos
Alanina Desidrogenase , Formiato Desidrogenases , Formiato Desidrogenases/química , Alanina Desidrogenase/metabolismo , Transaminases/genética , Transaminases/metabolismo , Biocatálise , Oxirredução
11.
Bioinformatics ; 37(17): 2761-2762, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33459767

RESUMO

SUMMARY: Protein immobilization, while widespread to unlock enzyme potential in biocatalysis, remains tied to a trial an error approach. Nonetheless, several databases and computational methods have been developed for protein characterization and their study. CapiPy is a user-friendly application for protein model creation and subsequent analysis with a special focus on the ease of use and interpretation of the results to help the users to make an informed decision on the immobilization approach which should be ideal for a protein of interest. The package has been tested with three separate random sets of 150 protein sequences from Uniprot with more than a 70% overall success rate (see Supplementary information and Supplementary Dataset). AVAILABILITY AND IMPLEMENTATION: The package is free to use under the GNU General Public License v3.0. All necessary files can be downloaded from https://github.com/drou0302/CapiPy or https://pypi.org/project/CapiPy/. All external requirements are also freely available, with some restrictions for non-academic users. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

12.
Chimia (Aarau) ; 76(7-8): 669-672, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-38071634

RESUMO

The number of industrial processes which include one or more enzyme-mediated step is growing rapidly, together with our understanding of how biocatalysts can be adapted to efficiently perform chemical reactions, often only remotely related to their natural reactivity. While enzymes as naturally biodegradable molecules are the most sustainable approach to catalysis, a more global vision of the overall sustainability of enzymatic process must be considered. Here an insight of how sustainability can be further improved when enzymes are immobilized on solid supports is discussed.

13.
Chembiochem ; 22(7): 1223-1231, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33237595

RESUMO

ß-Glucosidases are used in the food industry to hydrolyse glycosidic bonds in complex sugars, with enzymes sourced from extremophiles better able to tolerate the process conditions. In this work, a novel ß-glycosidase from the acidophilic organism Alicyclobacillus herbarius was cloned and heterologously expressed in Escherichia coli BL21(DE3). AheGH1 was stable over a broad range of pH values (5-11) and temperatures (4-55 °C). The enzyme exhibited excellent tolerance to fructose and good tolerance to glucose, retaining 65 % activity in the presence of 10 % (w/v) glucose. It also tolerated organic solvents, some of which appeared to have a stimulating effect, in particular ethanol with a 1.7-fold increase in activity at 10 % (v/v). The enzyme was then applied for the cleavage of isoflavone from isoflavone glucosides in an ethanolic extract of soy flour, to produce soy isoflavones, which constitute a valuable food supplement, full conversion was achieved within 15 min at 30 °C.


Assuntos
Alicyclobacillus/enzimologia , Glycine max/química , Isoflavonas/metabolismo , beta-Glucosidase/metabolismo , Domínio Catalítico , Estabilidade Enzimática , Escherichia coli/metabolismo , Glicosídeos/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Isoflavonas/química , Cinética , Estrutura Terciária de Proteína , Glycine max/metabolismo , Temperatura , beta-Glucosidase/química , beta-Glucosidase/genética
14.
Chemistry ; 27(67): 16616-16620, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585789

RESUMO

The combination of biocatalysis and chemocatalysis can be more powerful than either technique alone. However, combining the two is challenging due to typically very different reaction conditions. Herein, chiral N-aryl amines, key features of many active pharmaceutical ingredients, are accessed in excellent enantioselectivity (typically>99.5 % ee) by combining transaminases with the Buchwald-Hartwig amination. By employing a bi-phasic buffer-toluene system as well as the ligand GPhos, the telescoped cascade proceeded with up to 89 % overall conversion in the presence of excess alanine. No coupling to alanine was observed.


Assuntos
Aminas , Transaminases , Aminação , Biocatálise , Ligantes , Transaminases/metabolismo
15.
Chemistry ; 26(66): 15206-15211, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32543723

RESUMO

The role of His145 in the T1 copper center of nitrite reductase (NiR) is pivotal for the activity of the enzyme. Mutation to a glycine at this position enables the reconstitution of the T1 center by the addition of imidazole as exogenous ligands, however the catalytic activity is only marginally rescued. Here, we demonstrate that the uptake of 1,3-dimethylimidazolylidene as N-heterocyclic carbene (NHC) by the H145G NiR mutant instead of imidazole yields a significantly more active catalyst, suggesting a beneficial role of such C-bonding. Spectroscopic analyses of the formed H145G≈NHC variant as well as an analogue without the catalytic T2 copper center reveal no significant alteration of the T1 site compared to the wild type or the variant containing imidazole as exogenous N-bound surrogate of H145. However, the presence of the carbene doubles the catalytic activity of the mutant compared to the imidazole variant. This enhanced activity has been attributed to a faster electron transfer to the T1 center in the NHC variant and a concomitant change of the rate-limiting step.


Assuntos
Metano/análogos & derivados , Nitrito Redutases , Catálise , Cobre/química , Ligantes , Metano/química , Nitrito Redutases/genética
16.
Appl Microbiol Biotechnol ; 104(10): 4407-4415, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32232528

RESUMO

The breakdown of sulphur glycosidic bonds in thioglycosides can produce isothiocyanate, a chemoprotective agent linked to the prevention of cancers; however, only a handful of enzymes have been identified that are k0nown to catalyse this reaction. Structural studies of the myrosinase enzyme, which is capable of hydrolysing the thioglycosidic bond, have identified residues that may play important roles in sulphur bond specific activity. Using rational design, two extremo-adapted ß-glycosidases from the species Thermus nonproteolyticus (TnoGH1) and Halothermothrix orenii (HorGH1) were engineered towards thioglycoside substrates. Twelve variants, six for TnoGH1and six for HorGH1, were assayed for activity. Remarkable enhancement of the specificity (kcat/KM) of TnoGH1 and HorGH1 towards ß-thioglycoside was observed in the single mutants TnoGH1-V287R (2500 M-1 s-1) and HorGH1-M229R (13,260 M-1 s-1) which showed a 3-fold increase with no loss in turnover rate when compared with the wild-type enzymes. Thus, the role of arginine is key to induce ß-thioglycosidase activity. Thorough kinetic investigation of the different mutants has shed light on the mechanism of ß-glycosidases when acting on the native substrate.Key Points •Key residues were identified in the active site of Brevicoryne brassicae myrosinase. •Rationally designed mutations were introduced into two extremo-adapted ß-glycosidases. •ß-glycosidases mutants exhibited improved activity against thioglycosidic bonds. •The mutation to arginine in the active site yielded the best variant.


Assuntos
Proteínas de Bactérias/genética , Firmicutes/genética , Glicosídeo Hidrolases/genética , Thermus/genética , beta-Glucosidase/genética , Sequência de Aminoácidos , Arginina/genética , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Firmicutes/enzimologia , Glicosídeo Hidrolases/classificação , Glicosídeo Hidrolases/metabolismo , Hidrólise , Cinética , Mutagênese Sítio-Dirigida , Especificidade por Substrato , Thermus/enzimologia , beta-Glucosidase/metabolismo
17.
Chimia (Aarau) ; 74(9): 689-692, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32958105

RESUMO

Our research focusses on highly sustainable enzymatic methods for the preparation of valuable molecules, spanning from pharmaceuticals, to small chiral intermediates, to flavours and perfumes. Specifically, we aim at developing strategies which will rapidly bridge the gap between academic discovery and industrial implementation. The use of enzymes in industrial processes is becoming more prominent and there is a need to combine the advantages of biocatalysis with high productivity to make it truly attractive. We have been among the pioneers of a new wave of research in the field of flow biocatalysis: whole cells expressing biocatalysts and cell-free systems have been developed by us and others in continuous systems for the preparation of valuable products. Continuous flow biocatalysis is the state of the art in continuous processing and is showing new exceptional properties of enzymes specially for what concerns their efficiency and long-lasting reusability. Here we report on the recent progress in the field by our research group.


Assuntos
Células Artificiais , Biocatálise , Enzimas/metabolismo
18.
Chimia (Aarau) ; 74(11): 890-894, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33243325

RESUMO

Significant progress has been made in establishing transaminases as robust biocatalysts for the green and scalable synthesis of a diverse range of chiral amines. However, very few examples on the amination of small cyclic ketones have been reported. Cyclic ketones are particularly challenging for transaminase enzymes because they do not display the well-defined small and large substituent areas that are characteristic for the bio- catalytic mechanism. In this work, we exploited the broad substrate scope of the (S)-selective transaminase from Halomonas elongata (HeWT) to develop an efficient biocatalytic system in continuous flow to generate a range of small cyclic amines which feature very often in pharmaceuticals and agrochemicals. [3] Tetrahydrofuran-3-one and other challenging prochiral ketones were rapidly (5-45 min) transformed to their corresponding amines with excellent molar conversion (94-99%) and moderate to excellent ee.


Assuntos
Aminas , Transaminases , Biocatálise , Estereoisomerismo , Especificidade por Substrato , Transaminases/metabolismo
19.
Chembiochem ; 20(22): 2830-2833, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31158309

RESUMO

The physiological role of biogenic aldehydes, such as 3,4-dihydroxyphenylacetaldehyde (DOPAL), has been associated with cardiovascular and neurodegenerative disorders. The availability of these substrates is limited and robust synthetic methodologies would greatly facilitate further biological studies. Herein, a transaminase-mediated single-step process in continuous mode, which leads to excellent product yields (90-95 %), is reported. Coimmobilization of the pyridoxal phosphate (PLP) cofactor eliminated the need for exogenous addition of this reagent without affecting the longevity of the system, delivering a truly self-sufficient process.


Assuntos
Aldeídos/síntese química , Proteínas de Bactérias/química , Transaminases/química , Aminas/química , Biocatálise , Halomonas/enzimologia , Fosfato de Piridoxal/química
20.
Langmuir ; 34(28): 8274-8280, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29920206

RESUMO

The use of an in situ immobilization procedure for the immobilization of hyperhalophilic alcohol dehydrogenase in a metal organic framework material is described. The easy and rapid in situ immobilization process enables retention of activity over a broad range of pH and temperature together with a decrease in the halophilicity of the enzyme. The catalytic activity of the immobilized enzyme was studied in nonaqueous solvent mixtures with the highest retention of activity in aqueous solutions of methanol and acetonitrile. The approach demonstrates that this immobilization method can be extended to hyperhalophilic enzymes with enhancements in activity and stability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa