Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 28(3): 433-446, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34949721

RESUMO

Detection of nucleic acids within subcellular compartments is key to understanding their function. Determining the intracellular distribution of nucleic acids requires quantitative retention and estimation of their association with different organelles by immunofluorescence microscopy. This is particularly important for the delivery of nucleic acid therapeutics, which depends on endocytic uptake and endosomal escape. However, the current protocols fail to preserve the majority of exogenously delivered nucleic acids in the cytoplasm. To solve this problem, by monitoring Cy5-labeled mRNA delivered to primary human adipocytes via lipid nanoparticles (LNP), we optimized cell fixation, permeabilization, and immunostaining of a number of organelle markers, achieving quantitative retention of mRNA and allowing visualization of levels that escape detection using conventional procedures. The optimized protocol proved effective on exogenously delivered siRNA, miRNA, as well as endogenous miRNA. Our protocol is compatible with RNA probes of single molecule fluorescence in situ hybridization (smFISH) and molecular beacon, thus demonstrating that it is broadly applicable to study a variety of nucleic acids in cultured cells.


Assuntos
Imunofluorescência/métodos , Hibridização in Situ Fluorescente/métodos , RNA/metabolismo , Células Cultivadas , Fixadores/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Nanopartículas/química , RNA/química , Processamento Pós-Transcricional do RNA , Transporte de RNA
2.
Nucleic Acids Res ; 43(16): 7984-8001, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26220182

RESUMO

Most delivery systems for small interfering RNA therapeutics depend on endocytosis and release from endo-lysosomal compartments. One approach to improve delivery is to identify small molecules enhancing these steps. It is unclear to what extent such enhancers can be universally applied to different delivery systems and cell types. Here, we performed a compound library screen on two well-established siRNA delivery systems, lipid nanoparticles and cholesterol conjugated-siRNAs. We identified fifty-one enhancers improving gene silencing 2-5 fold. Strikingly, most enhancers displayed specificity for one delivery system only. By a combination of quantitative fluorescence and electron microscopy we found that the enhancers substantially differed in their mechanism of action, increasing either endocytic uptake or release of siRNAs from endosomes. Furthermore, they acted either on the delivery system itself or the cell, by modulating the endocytic system via distinct mechanisms. Interestingly, several compounds displayed activity on different cell types. As proof of principle, we showed that one compound enhanced siRNA delivery in primary endothelial cells in vitro and in the endocardium in the mouse heart. This study suggests that a pharmacological approach can improve the delivery of siRNAs in a system-specific fashion, by exploiting distinct mechanisms and acting upon multiple cell types.


Assuntos
RNA Interferente Pequeno/administração & dosagem , Animais , Células Cultivadas , Colesterol , Endossomos/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Células HeLa , Hepatócitos/metabolismo , Humanos , Lipídeos , Camundongos , Nanopartículas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Bibliotecas de Moléculas Pequenas
3.
J Cell Biol ; 221(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34882187

RESUMO

Delivery of exogenous mRNA using lipid nanoparticles (LNPs) is a promising strategy for therapeutics. However, a bottleneck remains in the poor understanding of the parameters that correlate with endosomal escape versus cytotoxicity. To address this problem, we compared the endosomal distribution of six LNP-mRNA formulations of diverse chemical composition and efficacy, similar to those used in mRNA-based vaccines, in primary human adipocytes, fibroblasts, and HeLa cells. Surprisingly, we found that total uptake is not a sufficient predictor of delivery, and different LNPs vary considerably in endosomal distributions. Prolonged uptake impaired endosomal acidification, a sign of cytotoxicity, and caused mRNA to accumulate in compartments defective in cargo transport and unproductive for delivery. In contrast, early endocytic/recycling compartments have the highest probability for mRNA escape. By using super-resolution microscopy, we could resolve a single LNP-mRNA within subendosomal compartments and capture events of mRNA escape from endosomal recycling tubules. Our results change the view of the mechanisms of endosomal escape and define quantitative parameters to guide the development of mRNA formulations toward higher efficacy and lower cytotoxicity.


Assuntos
Endocitose , Endossomos/metabolismo , Lipossomos/metabolismo , Nanopartículas/metabolismo , RNA Mensageiro/metabolismo , Células HeLa , Humanos , RNA Mensageiro/genética , Transferrina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
4.
Nat Commun ; 5: 5301, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25412933

RESUMO

Nanomaterials with enzyme-like properties has attracted significant interest, although limited information is available on their biological activities in cells. Here we show that V2O5 nanowires (Vn) functionally mimic the antioxidant enzyme glutathione peroxidase by using cellular glutathione. Although bulk V2O5 is known to be toxic to the cells, the property is altered when converted into a nanomaterial form. The Vn nanozymes readily internalize into mammalian cells of multiple origin (kidney, neuronal, prostate, cervical) and exhibit robust enzyme-like activity by scavenging the reactive oxygen species when challenged against intrinsic and extrinsic oxidative stress. The Vn nanozymes fully restore the redox balance without perturbing the cellular antioxidant defense, thus providing an important cytoprotection for biomolecules against harmful oxidative damage. Based on our findings, we envision that biocompatible Vn nanowires can provide future therapeutic potential to prevent ageing, cardiac disorders and several neurological conditions, including Parkinson's and Alzheimer's disease.


Assuntos
Antioxidantes/metabolismo , Nanofios/química , Substâncias Protetoras/metabolismo , Vanadatos/metabolismo , Antioxidantes/química , Citoproteção , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Células HEK293 , Humanos , Oxirredução , Substâncias Protetoras/química , Espécies Reativas de Oxigênio/metabolismo , Vanadatos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa