Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Water Sci Technol ; 85(8): 2318-2331, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35486457

RESUMO

While soluble microbial products (SMP) and extracellular polymeric substances (EPS) in wastewater bioprocesses have been widely studied, a lack of standard quantification procedures make it difficult to compare results between studies. This study investigated the effect of temperature on SMP and EPS profiles for biological nutrient removal (BNR) sludges and aerobic membrane bioreactor sludge by adapting the commonly used heat extraction and centrifugation scheme, followed by colorimetric quantification of the carbohydrate and protein fractions using the phenol-sulfuric acid (PS) and the bicinchoninic acid (BCA) methods, respectively. To overcome known inconsistencies in colorimetry, total carbon (TC), total nitrogen (TN), and fluorometry analyses were performed in tandem. SMP samples marginally benefitted from heat extraction, owing to their mostly soluble nature, while EPS profiles were greatly influenced by temperature. 60 °C appears to be a suitable general-purpose extraction temperature near the lysis threshold for the sludges tested. The PS method's misestimation due to lack of specificity was observed and contrasted by TC analyses, while the TN analyses corroborated the BCA assays. Fluorometry proved to be a sensitive and rapid analytical method that provided semi-quantitative information on SMP and EPS constituents, particularly its proteinaceous components, with positive implications for robust wastewater process control.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Águas Residuárias , Carbono , Temperatura Alta , Esgotos , Temperatura
2.
Environ Sci Technol ; 53(13): 7347-7354, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31244075

RESUMO

Concerns regarding ambient temperature operation, dissolved methane recovery, and nutrient removal have limited the implementation of anaerobic membrane bioreactors (AnMBRs) for domestic wastewater treatment. This study addresses these challenges using a pilot-scale gas-sparged AnMBR, with post-treatment recovery of dissolved methane and nutrients. Operating under ambient temperatures for 472 days, the AnMBR achieved an average effluent quality of 58 ± 27 mg/L COD and 25 ± 12 mg/L BOD5 at temperatures ranging from 12.7 to 31.5 °C. The average total methane yield was 0.14 ± 0.06 L-CH4/g-COD fed, with 42% of the total methane dissolved in the permeate. Dissolved methane removal using a hollow fiber membrane contactor achieved an average removal efficiency of 70 ± 5%, producing effluent dissolved methane concentrations of 3.8 ± 0.94 mg/L. The methane recovered from gaseous and dissolved fractions could generate an estimated 72.8% of the power required for energy neutrality. Nutrient recovery was accomplished using coagulation, flocculation, and sedimentation for removal of sulfide and phosphorus, followed by a clinoptilolite ion-exchange column for removal of ammonia, producing effluent concentrations of 0.7 ± 1.7 mg-S/L, 0.43 ± 0.29 mg-P/L and 0.05 ± 0.05 mg-N/L. The successful integration of AnMBRs in a treatment train that addresses the critical challenges of dissolved methane and nutrients demonstrates the viability of the technology in achieving holistic wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Metano , Temperatura
3.
Biotechnol Bioeng ; 114(6): 1151-1159, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28067404

RESUMO

When anode-respiring bacteria (ARB) respire electrons to an anode in microbial electrochemical cells (MXCs), they harvest only a small amount of free energy. This means that ARB must have a high substrate-oxidation rate coupled with a high ratio of electrons used for respiration compared to total electrons removed by substrate utilization. It also means that they are especially susceptible to inhibition that slows anode respiration or lowers their biomass yield. Using several electrochemical techniques, we show that a relatively high total ammonium-nitrogen (TAN) concentration (2.2 g TAN/L) induced significant stress on the ARB biofilms, lowering their true yield and forcing the ARB to boost the ratio of electrons respired per electrons consumed from the substrate. In particular, a higher respiration rate, measured as current density (j), was associated with slower growth and a lower net yield, compared to an ARB biofilm grown with a lower ammonium concentration (0.2 g TAN/L). Further increases in influent TAN (to 3 and then to 4.4 g TAN/L) caused nearly complete inhibition of anode respiration. However, the ARB could recover from high-TAN inhibition after a shift of the MXC's feed to 0.2 g TAN/L. In summary, ARB biofilms were inhibited by a high TAN concentration, but could divert more electron flow toward anode respiration with modest inhibition and recover when severe inhibition was relieved. Biotechnol. Bioeng. 2017;114: 1151-1159. © 2017 Wiley Periodicals, Inc.


Assuntos
Compostos de Amônio/administração & dosagem , Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Eletrodos/microbiologia , Consórcios Microbianos/fisiologia , Oxigênio/metabolismo , Condutometria/instrumentação , Condutometria/métodos , Relação Dose-Resposta a Droga , Transferência de Energia/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
4.
Archaea ; 2016: 4089684, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725793

RESUMO

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H2 accumulation. As the anaerobic microbial community adapted to the gradual increase of total ammonia-N (NH3-N) from 890 ± 295 to 2040 ± 30 mg/L, the Bacterial and Archaeal communities became less diverse. Phylotypes most closely related to hydrogenotrophic Methanoculleus (36.4%) and Methanobrevibacter (11.6%), along with acetoclastic Methanosaeta (29.3%), became the most abundant Archaeal sequences during acclimation. This was accompanied by a sharp increase in the relative abundances of phylotypes most closely related to acetogens and fatty-acid producers (Clostridium, Coprococcus, and Sphaerochaeta) and syntrophic fatty-acid Bacteria (Syntrophomonas, Clostridium, Clostridiaceae species, and Cloacamonaceae species) that have metabolic capabilities for butyrate and propionate fermentation, as well as for reverse acetogenesis. Our results provide evidence countering a prevailing theory that acetoclastic methanogens are selectively inhibited when the total ammonia-N concentration is greater than ~1000 mgN/L. Instead, acetoclastic and hydrogenotrophic methanogens coexisted in the presence of total ammonia-N of ~2000 mgN/L by establishing syntrophic relationships with fatty-acid fermenters, as well as homoacetogens able to carry out forward and reverse acetogenesis.


Assuntos
Amônia/metabolismo , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Biota , Anaerobiose , Animais , Archaea/genética , Archaea/crescimento & desenvolvimento , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Análise da Demanda Biológica de Oxigênio , Meios de Cultura/química , Esterco , Reação em Cadeia da Polimerase em Tempo Real , Suínos
5.
Biotechnol Bioeng ; 113(2): 320-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26222672

RESUMO

Biofuels derived from microalgae have promise as carbon-neutral replacements for petroleum. However, difficulty extracting microalgae-derived lipids and the co-extraction of non-lipid components add major costs that detract from the benefits of microalgae-based biofuel. Selective fermentation could alleviate these problems by managing microbial degradation so that carbohydrates and proteins are hydrolyzed and fermented, but lipids remain intact. We evaluated selective fermentation of Scenedesmus biomass in batch experiments buffered at pH 5.5, 7, or 9. Carbohydrates were fermented up to 45% within the first 6 days, protein fermentation followed after about 20 days, and lipids (measured as fatty acid methyl esters, FAME) were conserved. Fermentation of the non-lipid components generated volatile fatty acids, with acetate, butyrate, and propionate being the dominant products. Selective fermentation of Scenedesmus biomass increased the amount of extractable FAME and the ratio of FAME to crude lipids. It also led to biohydrogenation of unsaturated FAME to more desirable saturated FAME (especially to C16:0 and C18:0), and the degree of saturation was inversely related to the accumulation of hydrogen gas after fermentation. Moreover, the microbial communities after selective fermentation were enriched in bacteria from families known to perform biohydrogenation, i.e., Porphyromonadaceae and Ruminococcaceae. Thus, this study provides proof-of-concept that selective fermentation can improve the quantity and quality of lipids that can be extracted from Scenedesmus.


Assuntos
Metabolismo dos Carboidratos , Carboidratos/isolamento & purificação , Ácidos Graxos/isolamento & purificação , Proteínas/isolamento & purificação , Proteínas/metabolismo , Scenedesmus/química , Fermentação , Concentração de Íons de Hidrogênio , Scenedesmus/metabolismo , Fatores de Tempo
6.
Environ Sci Technol ; 50(13): 6606-20, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27214029

RESUMO

Phosphorus (P) is a critical, geographically concentrated, nonrenewable resource necessary to support global food production. In excess (e.g., due to runoff or wastewater discharges), P is also a primary cause of eutrophication. To reconcile the simultaneous shortage and overabundance of P, lost P flows must be recovered and reused, alongside improvements in P-use efficiency. While this motivation is increasingly being recognized, little P recovery is practiced today, as recovered P generally cannot compete with the relatively low cost of mined P. Therefore, P is often captured to prevent its release into the environment without beneficial recovery and reuse. However, additional incentives for P recovery emerge when accounting for the total value of P recovery. This article provides a comprehensive overview of the range of benefits of recovering P from waste streams, i.e., the total value of recovering P. This approach accounts for P products, as well as other assets that are associated with P and can be recovered in parallel, such as energy, nitrogen, metals and minerals, and water. Additionally, P recovery provides valuable services to society and the environment by protecting and improving environmental quality, enhancing efficiency of waste treatment facilities, and improving food security and social equity. The needs to make P recovery a reality are also discussed, including business models, bottlenecks, and policy and education strategies.


Assuntos
Fósforo , Águas Residuárias , Eutrofização , Metais , Nitrogênio
7.
J Ind Microbiol Biotechnol ; 43(9): 1195-204, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27276935

RESUMO

Anaerobic digestion treatment of brewer's spent yeast (SY) is a viable option for bioenergy capture. The biochemical methane potential (BMP) assay was performed with three different samples (SY1, SY2, and SY3) and SY1 dilutions (75, 50, and 25 % on a v/v basis). Gompertz-equation parameters denoted slow degradability of SY1 with methane production rates of 14.59-4.63 mL/day and lag phases of 10.72-19.7 days. Performance and kinetic parameters were obtained with the Gompertz equation and the first-order hydrolysis model with SY2 and SY3 diluted 25 % and SY1 50 %. A SY2 25 % gave a 17 % of TCOD conversion to methane as well as shorter lag phase (<1 day). Average estimated hydrolysis constant for SY was 0.0141 (±0.003) day(-1), and SY2 25 % was more appropriate for faster methane production. Methane capture and biogas composition were dependent upon the SY source, and co-digestion (or dilution) can be advantageous.


Assuntos
Biocombustíveis , Metano/metabolismo , Leveduras/metabolismo , Anaerobiose , Hidrólise , Cinética
8.
Environ Sci Technol ; 49(24): 14725-31, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26569143

RESUMO

Thermoanaerobacter pseudethanolicus 39E (ATCC 33223), a thermophilic, Fe(III)-reducing, and fermentative bacterium, was evaluated for its ability to produce current from four electron donors-xylose, glucose, cellobiose, and acetate-with a fixed anode potential (+ 0.042 V vs SHE) in a microbial electrochemical cell (MXC). Under thermophilic conditions (60 °C), T. pseudethanolicus produced high current densities from xylose (5.8 ± 2.4 A m(-2)), glucose (4.3 ± 1.9 A m(-2)), and cellobiose (5.2 ± 1.6 A m(-2)). It produced insignificant current when grown with acetate, but consumed the acetate produced from sugar fermentation to produce electrical current. Low-scan cyclic voltammetry (LSCV) revealed a sigmoidal response with a midpoint potential of -0.17 V vs SHE. Coulombic efficiency (CE) varied by electron donor, with xylose at 34.8% ± 0.7%, glucose at 65.3% ± 1.0%, and cellobiose at 27.7% ± 1.5%. Anode respiration was sustained over a pH range of 5.4-8.3, with higher current densities observed at higher pH values. Scanning electron microscopy showed a well-developed biofilm of T. pseudethanolicus on the anode, and confocal laser scanning microscopy demonstrated a maximum biofilm thickness (Lf) greater than ~150 µm for the glucose-fed biofilm.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Thermoanaerobacter/metabolismo , Acetatos , Biofilmes , Celobiose/metabolismo , Técnicas Eletroquímicas/instrumentação , Fermentação , Glucose/metabolismo , Microscopia Eletrônica de Varredura , Thermoanaerobacter/química , Xilose/metabolismo
9.
Bioelectrochemistry ; 156: 108595, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37976771

RESUMO

Loss of bioelectrochemical activity in low resource environments or from chemical toxin exposure is a significant limitation in microbial electrochemical cells (MxCs), necessitating the development of materials that can stabilize and protect electroactive biofilms. Here, polyethylene glycol (PEG) hydrogels were designed as protective coatings over anodic biofilms, and the effect of the hydrogel coatings on biofilm viability under oligotrophic conditions and ammonia-N (NH4+-N) shocks was investigated. Hydrogel deposition occurred through polymerization of PEG divinyl sulfone and PEG tetrathiol precursor molecules, generating crosslinked PEG coatings with long-term hydrolytic stability between pH values of 3 and 10. Simultaneous monitoring of coated and uncoated electrodes co-located within the same MxC anode chamber confirmed that the hydrogel did not compromise biofilm viability, while the coated anode sustained nearly a 4 × higher current density (0.44 A/m2) compared to the uncoated anode (0.12 A/m2) under oligotrophic conditions. Chemical interactions between NH4+-N and PEG hydrogels revealed that the hydrogels provided a diffusive barrier to NH4+-N transport. This enabled PEG-coated biofilms to generate higher current densities during NH4+-N shocks and faster recovery afterwards. These results indicate that PEG-based coatings can expand the non-ideal chemical environments that electroactive biofilms can reliably operate in.


Assuntos
Biofilmes , Polietilenoglicóis , Polietilenoglicóis/química , Materiais Revestidos Biocompatíveis/química , Hidrogéis/química , Bactérias
10.
Environ Sci Technol ; 47(9): 4934-40, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23544360

RESUMO

Thermincola ferriacetica is a recently isolated thermophilic, dissimilatory Fe(III)-reducing, Gram-positive bacterium with capability to generate electrical current via anode respiration. Our goals were to determine the maximum rates of anode respiration by T. ferriacetica and to perform a detailed microscopic and electrochemical characterization of the biofilm anode. T. ferriacetica DSM 14005 was grown at 60 °C on graphite-rod anodes poised at -0.06 V (vs) SHE in duplicate microbial electrolysis cells (MECs). The cultures grew rapidly until they achieved a sustained current density of 7-8 A m(-2) with only 10 mM bicarbonate buffer and an average Coulombic Efficiency (CE) of 93%. Cyclic voltammetry performed at maximum current density revealed a Nernst-Monod response with a half saturation potential (EKA) of -0.127 V (vs) SHE. Confocal microscopy images revealed a thick layer of actively respiring cells of T. ferriacetica (~38 µm), which is the first documentation for a gram positive anode respiring bacterium (ARB). Scanning electron microscopy showed a well-developed biofilm with a very dense network of extracellular appendages similar to Geobacter biofilms. The high current densities, a thick biofilm (~38 µm) with multiple layers of active cells, and Nernst-Monod behavior support extracellular electron transfer (EET) through a solid conductive matrix - the first such observation for Gram-positive bacteria. Operating with a controlled anode potential enabled us to grow T. ferriacetica that can use a solid conductive matrix resulting in high current densities that are promising for MXC applications.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Bactérias Gram-Positivas/metabolismo , Biofilmes , Bactérias Gram-Positivas/crescimento & desenvolvimento , Cinética , Microscopia Eletrônica de Varredura
11.
Biotechnol Bioeng ; 109(9): 2230-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22447387

RESUMO

This study demonstrated the utility in correlating performance and community structure of a trichloroethene (TCE)-dechlorinating microbial consortium; specifically dechlorinators, fermenters, homoacetogens, and methanogens. Two complementary approaches were applied: predicting trends in the microbial community structure based on an electron balance analysis and experimentally assessing the community structure via pyrosequencing and quantitative polymerase chain reaction (qPCR). Fill-and-draw reactors inoculated with the DehaloR^2 consortium were operated at five TCE-pulsing rates between 14 and 168 µmol/10-day-SRT, amended with TCE every 2 days to give peak concentrations between 0.047 and 0.56 mM (6-74 ppm) and supplied lactate and methanol as sources of e(-) donor and carbon. The complementary approaches demonstrated the same trends: increasing abundance of Dehalococcoides and Geobacter and decreasing abundance of Firmicutes with increasing TCE pulsing rate, except for the highest pulsing rate. Based on qPCR, the abundance of Geobacter and Dehalococcoides decreased for the highest TCE pulsing rate, and pyrosequencing showed this same trend for the latter. This deviation suggested decoupling of Dehalococcoides growth from dechlorination. At pseudo steady-state, methanogenesis was minimal for all TCE pulsing rates. Pyrosequencing and qPCR showed suppression of the homoacetogenic genera Acetobacterium at the two highest pulsing rates, and it was corroborated by a decreased production of acetate from lactate fermentation and increased propionate production. Suppression of Acetobacterium, which can provide growth factors to Dehalococcoides, may have contributed to the decoupling for the highest TCE-pulsing rate.


Assuntos
Reatores Biológicos/microbiologia , Consórcios Microbianos/fisiologia , Tricloroetileno/metabolismo , Acetobacterium/metabolismo , Biodegradação Ambiental , Biotecnologia/métodos , Chloroflexi/metabolismo , DNA Bacteriano/química , Elétrons , Geobacter/metabolismo , Halogenação , Ácido Láctico/metabolismo , Metanol/metabolismo , Consórcios Microbianos/genética , Reação em Cadeia da Polimerase , Tricloroetileno/análise , Tricloroetileno/química
12.
Microb Cell Fact ; 11: 128, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22974059

RESUMO

BACKGROUND: Buffering to achieve pH control is crucial for successful trichloroethene (TCE) anaerobic bioremediation. Bicarbonate (HCO3-) is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3- also serves as the electron acceptor for hydrogenotrophic methanogens and hydrogenotrophic homoacetogens, two microbial groups competing with organohalide respirers for hydrogen (H2). We studied the effect of HCO3- as a buffering agent and the effect of HCO3--consuming reactions in a range of concentrations (2.5-30 mM) with an initial pH of 7.5 in H2-fed TCE reductively dechlorinating communities containing Dehalococcoides, hydrogenotrophic methanogens, and hydrogenotrophic homoacetogens. RESULTS: Rate differences in TCE dechlorination were observed as a result of added varying HCO3- concentrations due to H2-fed electrons channeled towards methanogenesis and homoacetogenesis and pH increases (up to 8.7) from biological HCO3- consumption. Significantly faster dechlorination rates were noted at all HCO3- concentrations tested when the pH buffering was improved by providing 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) as an additional buffer. Electron balances and quantitative PCR revealed that methanogenesis was the main electron sink when the initial HCO3- concentrations were 2.5 and 5 mM, while homoacetogenesis was the dominant process and sink when 10 and 30 mM HCO3- were provided initially. CONCLUSIONS: Our study reveals that HCO3- is an important variable for bioremediation of chloroethenes as it has a prominent role as an electron acceptor for methanogenesis and homoacetogenesis. It also illustrates the changes in rates and extent of reductive dechlorination resulting from the combined effect of electron donor competition stimulated by HCO3- and the changes in pH exerted by methanogens and homoacetogens.


Assuntos
Bicarbonatos/química , Chloroflexi/metabolismo , Tricloroetileno/metabolismo , Soluções Tampão , Elétrons , HEPES/química , Halogenação , Hidrogênio/química , Concentração de Íons de Hidrogênio , Oxirredução , Tricloroetileno/química
13.
Environ Sci Technol ; 46(18): 10349-55, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22909141

RESUMO

One of the limitations currently faced by microbial electrochemical cell (MXC) technologies lies in the shortage of different organisms capable of forming a biofilm and channeling electrons from substrates to the anode at high current densities. Using a poised anode (-0.30 V vs Ag/AgCl) and acetate as the electron donor in a MXC, we demonstrated the presence of highly efficient anode-respiring bacteria (ARB) able to produce high current densities (>1.5 A/m(2) anode) in seven out of thirteen environmental samples. These included marshes, lake sediments, saline microbial mats, and anaerobic soils obtained from geographically diverse locations. Our microbial ecology analysis, using pyrosequencing, shows that bacteria related to the genus Geobacter, a known and commonly found ARB, dominate only two of the biofilm communities producing high current; other biofilm communities contained different known and/or novel ARB. The presence of ARB in geographically diverse locations indicates that ARB thrive in a wide range of ecosystems. Studying ARB from different environmental conditions will allow us to better understand the ubiquity of anode respiration, compare the capabilities of different ARB consortia, and find ARB with useful metabolic capacities for future applications.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes , Eletrodos/microbiologia , Geobacter/fisiologia , Biofilmes/crescimento & desenvolvimento , Eletricidade , Elétrons
14.
Proc Natl Acad Sci U S A ; 106(7): 2365-70, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19164560

RESUMO

Recent evidence suggests that the microbial community in the human intestine may play an important role in the pathogenesis of obesity. We examined 184,094 sequences of microbial 16S rRNA genes from PCR amplicons by using the 454 pyrosequencing technology to compare the microbial community structures of 9 individuals, 3 in each of the categories of normal weight, morbidly obese, and post-gastric-bypass surgery. Phylogenetic analysis demonstrated that although the Bacteria in the human intestinal community were highly diverse, they fell mainly into 6 bacterial divisions that had distinct differences in the 3 study groups. Specifically, Firmicutes were dominant in normal-weight and obese individuals but significantly decreased in post-gastric-bypass individuals, who had a proportional increase of Gammaproteobacteria. Numbers of the H(2)-producing Prevotellaceae were highly enriched in the obese individuals. Unlike the highly diverse Bacteria, the Archaea comprised mainly members of the order Methanobacteriales, which are H(2)-oxidizing methanogens. Using real-time PCR, we detected significantly higher numbers of H(2)-utilizing methanogenic Archaea in obese individuals than in normal-weight or post-gastric-bypass individuals. The coexistence of H(2)-producing bacteria with relatively high numbers of H(2)-utilizing methanogenic Archaea in the gastrointestinal tract of obese individuals leads to the hypothesis that interspecies H(2) transfer between bacterial and archaeal species is an important mechanism for increasing energy uptake by the human large intestine in obese persons. The large bacterial population shift seen in the post-gastric-bypass individuals may reflect the double impact of the gut alteration caused by the surgical procedure and the consequent changes in food ingestion and digestion.


Assuntos
Derivação Gástrica/efeitos adversos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Obesidade/patologia , Obesidade/cirurgia , Adulto , Archaea/metabolismo , Índice de Massa Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Dados de Sequência Molecular , Obesidade/microbiologia , Complicações Pós-Operatórias , RNA Ribossômico 16S/química , Análise de Sequência de DNA
15.
Water Sci Technol ; 65(1): 1-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22173401

RESUMO

We evaluated the consumption of hydrogen gas at the anode of a microbial electrolysis cell (MEC) and characterized the significance of new interactions between anode respiring bacteria (ARB) and homo-acetogens. We demonstrated the significance of biofilm limitation for direct consumption of H(2) over acetate by ARB, using the deep biofilm model. Selective inhibition of the major competing hydrogen sink at the biofilm anode, methanogenesis, resulted in significant increase in electron recovery as electric current (∼10-12 A/m(2)). The presence of acetate at high concentration in the anode compartment and detection of formate, a known intermediate of the acetyl-CoA pathway, provide evidence towards the role of homoacetogenic bacteria. We also assessed the activity of homoacetogens with reverse transcription quantitative PCR targeting formyltetrahydrofolate synthetase (FTHFS) transcripts, and observed a comparable decrease in the FTHFS transcript numbers with current density and acetate concentrations as we decreased the HRT below 4.5 h. The biofilm anode community was predominated by Deltaproteobacteria (70% of total readouts) along with a fraction of the homoacetogenic genus, Acetobacterium (4% of total readouts), established by pyrosequencing targeting the V6 region of the 16S rRNA. Homoacetogens seem to play a major role as syntrophic members of the biofilm anode community when electron recovery is high.


Assuntos
Bactérias/genética , Fontes de Energia Bioelétrica/microbiologia , Biofilmes/classificação , Hidrogênio/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , DNA Bacteriano/análise , Eletrodos , Formiato-Tetra-Hidrofolato Ligase/genética , Formiatos/metabolismo , RNA Bacteriano/análise , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrofotometria
16.
ACS Appl Bio Mater ; 5(1): 134-145, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35014824

RESUMO

Multispecies biofilms are a common limitation in membrane bioreactors, causing membrane clogging, degradation, and failure. There is a poor understanding of biological fouling mechanisms in these systems due to the limited number of experimental techniques useful for probing microbial interactions at the membrane interface. Here, we develop a new experimental method, termed polymer surface dissection (PSD), to investigate multispecies assembly processes over membrane surfaces. The PSD method uses photodegradable polyethylene glycol hydrogels functionalized with bioaffinity ligands to bind and detach microscale, microbial aggregates from the membrane for microscopic observation. Subsequent exposure of the hydrogel to high resolution, patterned UV light allows for controlled release of any selected aggregate of desired size at high purity for DNA extraction. Follow-up 16S community analysis reveals aggregate composition, correlating microscopic images with the bacterial community structure. The optimized approach can isolate aggregates with microscale spatial precision and yields genomic DNA at sufficient quantity and quality for sequencing from aggregates with areas as low as 2000 µm2, without the need of culturing for sample enrichment. To demonstrate the value of the approach, PSD was used to reveal the composition of microscale aggregates of different sizes during early-stage biofouling of aerobic wastewater communities over PVDF membranes. Larger aggregates exhibited lower diversity of bacterial communities, and a shift in the community structure was found as aggregate size increased to areas between 25,000 and 45,000 µm2, below which aggregates were more enriched in Bacteroidetes and above which aggregates were more enriched with Proteobacteria. The findings demonstrate that community succession can be observed within microscale aggregates and that the PSD method is useful for identification and characterization of early colonizing bacteria that drive biofouling on membrane surfaces.


Assuntos
Incrustação Biológica , Bactérias/genética , Membranas Artificiais , Polímeros , Esgotos/microbiologia
17.
Sci Total Environ ; 783: 146850, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33865120

RESUMO

Anaerobic membrane bioreactors (AnMBRs) represent an emerging environmental biotechnology platform with the potential to simultaneously recover water, energy, and nutrients from concentrated wastewaters. The removal and beneficial capture of nutrients from AnMBR permeate has yet to be fully explored, therefore this study sought to foster iron phosphate recovery through a tertiary coagulation process, as well as characterize the recovered nutrient product (RNP) and assess its net phosphorus release, diffusion, and availability for plant uptake. One of the primary goals of this study was to optimize the dose of the coagulant, ferric chloride, and coagulant aid, aluminum chlorohydrate (ACH), for continuous application to the coagulation-flocculation-sedimentation (CFS) unit of an AnMBR pilot plant treating municipal wastewater, through controlled bench-scale jar tests. Anaerobic systems present unique challenges for nutrient capture, including high, dissolved hydrogen sulfide concentrations, along with settleability issues. The addition of the coagulant aid increases settleability, while enhancing phosphorus removal by up to 20%, decreasing iron demand. Water quality analysis indicated that a variety of factors affect nutrient capture, including the COD (chemical oxygen demand) concentration of the permeate and the limiting coagulant dose. COD >200 mg/L was shown to decrease the phosphorus removal efficiency by up to 15%. A combination of inductively coupled plasma optical emission spectrometer (ICP-OES) elemental analysis, inductively coupled plasma mass spectrometer (ICP-MS) elemental analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray absorption near-edge structure (XANES) spectroscopy analysis was used to characterize the P-rich RNP which revealed a 2.58% w/w phosphorus content and the lack of a well-defined crystalline structure. Detailed studies on resin extractable phosphorus to assess the plant uptake potential also demonstrated that iron-based P-rich RNPs may not be an effective fertilizer product, as they can act as a phosphorus sink in some agricultural systems instead of a source.


Assuntos
Fósforo , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Ferro , Nutrientes , Esgotos , Enxofre , Águas Residuárias
18.
Biotechnol Bioeng ; 105(1): 69-78, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19688868

RESUMO

We compared the microbial community structures that developed in the biofilm anode of two microbial electrolysis cells fed with ethanol, a fermentable substrate-one where methanogenesis was allowed and another in which it was completely inhibited with 2-bromoethane sulfonate. We observed a three-way syntrophy among ethanol fermenters, acetate-oxidizing anode-respiring bacteria (ARB), and a H2 scavenger. When methanogenesis was allowed, H2-oxidizing methanogens were the H2 scavengers, but when methanogenesis was inhibited, homo-acetogens became a channel for electron flow from H2 to current through acetate. We established the presence of homo-acetogens by two independent molecular techniques: 16S rRNA gene based pyrosequencing and a clone library from a highly conserved region in the functional gene encoding formyltetrahydrofolate synthetase in homo-acetogens. Both methods documented the presence of the homo-acetogenic genus, Acetobacterium, only with methanogenic inhibition. Pyrosequencing also showed a predominance of ethanol-fermenting bacteria, primarily represented by the genus Pelobacter. The next most abundant group was a diverse community of ARB, and they were followed by H(2)-scavenging syntrophic partners that were either H2-oxidizing methanogens or homo-acetogens when methanogenesis was suppressed. Thus, the community structure in the biofilm anode and suspension reflected the electron-flow distribution and H2-scavenging mechanism.


Assuntos
Biofilmes , Hidrogênio/metabolismo , Bactérias/enzimologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Eletrodos/microbiologia , Formiato-Tetra-Hidrofolato Ligase/genética , RNA Ribossômico 16S/genética
19.
Water Environ Res ; 82(12): 2316-24, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21214025

RESUMO

We evaluated the feasibility of using waste activated sludge (WAS) from a wastewater treatment plant as an internal electron donor to fuel denitrification, by increasing its bioavailability with Focused-Pulsed (FP) technology. The focused-pulsed treatment of WAS (producing FP-WAS) increased the semi-soluble chemical oxygen demand (SSCOD) by 26 times compared with the control WAS. The maximum denitrification rate of FP-WAS (0.25 g nitrate-nitrogen [NO3- -N]/g volatile suspended solids [VSS] x d) was greater than for untreated WAS (0.05 g NO3- -N/g VSS x d) and methanol (0.15 NO3- -N/g VSS x d). Centrifuging out the larger suspended solids created FP-centrate, which had a rate (0.14 g NO3- -N/g VSS x d) comparable with that of methanol. Thus, FP treatment of WAS created SSCOD, which was an internal electron donor that was able to drive denitrification at a rate similar to or greater than methanol. One trade-off of using FP-WAS for denitrification is an increase in total Kjeldahl nitrogen (TKN) loading. While FP-WAS achieved the lowest total nitrogen and NO3- -N concentrations in the batch denitrification test, its final ammonia-nitrogen (NH3-N) concentration was the highest, as a result of the release of organic nitrogen from the FP-treated biomass; FP-centrate had less release of total soluble nitrogen. While the return of total nitrogen (TN) is small compared with the SSCOD, the effects of the added nitrogen loading need to be considered.


Assuntos
Desnitrificação , Nitrogênio/química , Esgotos/química , Poluentes Químicos da Água/química , Reatores Biológicos , Fatores de Tempo , Eliminação de Resíduos Líquidos/métodos
20.
Bioresour Technol ; 310: 123425, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32361646

RESUMO

This study evaluates the microbial community development in the suspended sludge within a pilot-scale gas sparged Anaerobic membrane bioreactor (AnMBR) under ambient conditions, as well as understand the influence of microbial signatures in the influent municipal wastewater on the bioreactor using amplicon sequence analysis. The predominant bacterial phyla comprised of Bacteroidetes, Proteobacteria, Firmicutes, and Chloroflexi demonstrated resiliency with ambient temperature operation over a period of 472 days. Acetoclastic Methanosaeta were predominant during most of the AnMBR operation. Beta diversity analysis indicated that the microbial communities present in the influent wastewater did not affect the AnMBR core microbiome. Syntrophic microbial interactions were evidenced by the presence of the members from Synergistales, Anaerolineales, Clostridiales, and Syntrophobacterales. The proliferation of sulfate reducing bacteria (SRB) along with sulfate reduction underscored the competition of SRB in the AnMBR. Operational and environmental variables did not greatly alter the core bacterial population based on canonical correspondence analysis.


Assuntos
Microbiota , Águas Residuárias , Anaerobiose , Reatores Biológicos , Humanos , Estações do Ano , Esgotos , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa