Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small Methods ; 8(3): e2301043, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009526

RESUMO

As the field of low-dimensional materials (1D or 2D) grows and more complex and intriguing structures are continuing to be found, there is an emerging need for techniques to characterize the nanoscale mechanical properties of all kinds of 1D/2D materials, in particular in their most practical state: sitting on an underlying substrate. While traditional nanoindentation techniques cannot accurately determine the transverse Young's modulus at the necessary scale without large indentations depths and effects to and from the substrate, herein an atomic-force-microscopy-based modulated nanomechanical measurement technique with Angstrom-level resolution (MoNI/ÅI) is presented. This technique enables non-destructive measurements of the out-of-plane elasticity of ultra-thin materials with resolution sufficient to eliminate any contributions from the substrate. This method is used to elucidate the multi-layer stiffness dependence of graphene deposited via chemical vapor deposition and discover a peak transverse modulus in two-layer graphene. While MoNI/ÅI has been used toward great findings in the recent past, here all aspects of the implementation of the technique as well as the unique challenges in performing measurements at such small resolutions are encompassed.

2.
Cryst Growth Des ; 24(7): 2821-2832, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38585377

RESUMO

Colloidal quantum dot (CQD) infrared (IR) photodetectors can be fabricated and operated with larger spectral tunability, fewer limitations in terms of cooling requirements and substrate lattice matching, and at a potentially lower cost than detectors based on traditional bulk materials. Silver selenide (Ag2Se) has emerged as a promising sustainable alternative to current state-of-the-art toxic semiconductors based on lead, cadmium, and mercury operating in the IR. However, an impeding gap in available absorption bandwidth for Ag2Se CQDs exists in the short-wave infrared (SWIR) region due to degenerate doping by the environment, switching the CQDs from intrinsic interband semiconductors in the near-infrared (NIR) to intraband absorbing CQDs in the mid-wave infrared (MWIR). Herein, we show that the small molecular p-type dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) can be used to extract electrons from the 1Se state of MWIR active Ag2Se CQDs to activate their intrinsic energy gap in the SWIR window. We demonstrate quenching of the MWIR Ag2Se absorbance peak, shifting of nitrile vibrational peaks characteristic of charge-neutral F4-TCNQ, as well as enhanced CQD absorption around ∼2500 nm after doping both in ambient and under air-free conditions. We elucidate the doping mechanism to be one that involves an integer charge transfer akin to doping in semiconducting polymers. These indications of charge transfer are promising milestones on the path to achieving sustainable SWIR Ag2Se CQD photodetectors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa